Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Res ; 137(1): 79-94, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37812342

RESUMEN

In the Malvaceae family, dynamic solar tracking by leaves is actuated by the deformation of the pulvinus, a thickened region at the leaf blade-petiole junction. While the internal structure is believed to play a crucial role in this process, experimental verification has been challenging due to technical limitations. To address this gap, we developed a semi-automated workflow, which integrates data analysis and image processing to simultaneously analyze the shape and internal structure of a Malvaceae pulvinus using X-ray microtomography. Firstly, we found that kenaf (Hibiscus cannabinus L.), a Malvaceae species with curved pulvini, exhibited solar-tracking leaf movement and selected it as a model system. We employed diffusible iodine-based contrast-enhanced computed tomography to visualize the internal structure of the kenaf pulvinus. Analysis of the pulvini's shape revealed variations in pulvinus morphology, yet plausible prediction of the centerline was accomplished using polar polynomial regression. Upon slicing the pulvini perpendicular to the centerline, we observed distinct gray value gradients along the proximo-distal and adaxial-abaxial axes, challenging threshold-based tissue segmentation. This workflow successfully generated three modified 3D images and derived quantitative parameters. Using these quantitative parameters, we conducted network analysis and found the linkage between the size-normalized cortex cross-sectional area and curvature. Polynomial least absolute shrinkage and selection operator (LASSO) regression revealed the relationship between the size-normalized cortex cross-sectional area and curvature commonly in all three tested samples. This workflow enables simultaneous analysis of the shape and internal structure, significantly improving the reproducibility of Malvaceae leaf pulvinus characterization.


Asunto(s)
Hibiscus , Pulvino , Microtomografía por Rayos X , Reproducibilidad de los Resultados , Hojas de la Planta
2.
Plant Physiol ; 192(2): 857-870, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36849132

RESUMEN

The cortical motor cells (CMCs) in a legume pulvinus execute the reversible deformation in leaf movement that is driven by changes in turgor pressure. In contrast to the underlying osmotic regulation property, the cell wall structure of CMCs that contributes to the movement has yet to be characterized in detail. Here, we report that the cell wall of CMCs has circumferential slits with low levels of cellulose deposition, which are widely conserved among legume species. This structure is unique and distinct from that of any other primary cell walls reported so far; thus, we named them "pulvinar slits." Notably, we predominantly detected de-methyl-esterified homogalacturonan inside pulvinar slits, with a low deposition of highly methyl-esterified homogalacturonan, as with cellulose. In addition, Fourier transform infrared spectroscopy analysis indicated that the cell wall composition of pulvini is different from that of other axial organs, such as petioles or stems. Moreover, monosaccharide analysis showed that pulvini are pectin-rich organs like developing stems and that the amount of galacturonic acid in pulvini is greater than in developing stems. Computer modeling suggested that pulvinar slits facilitate anisotropic extension in the direction perpendicular to the slits in the presence of turgor pressure. When tissue slices of CMCs were transferred to different extracellular osmotic conditions, pulvinar slits altered their opening width, indicating their deformability. In this study, we thus characterized a distinctive cell wall structure of CMCs, adding to our knowledge of repetitive and reversible organ deformation as well as the structural diversity and function of the plant cell wall.


Asunto(s)
Fabaceae , Pulvinar , Celulosa/análisis , Pulvinar/metabolismo , Pectinas/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36142170

RESUMEN

Plant cell deformation is a mechanical process that is driven by differences in the osmotic pressure inside and outside of the cell and is influenced by cell wall properties. Legume leaf movements result from reversible deformation of pulvinar motor cells. Reversible cell deformation is an elastic process distinct from the irreversible cell growth of developing organs. Here, we begin with a review of the basic mathematics of cell volume changes, cell wall function, and the mechanics of bending deformation at a macro scale. Next, we summarize the findings of recent molecular genetic studies of pulvinar development. We then review the mechanisms of the adaxial/abaxial patterning because pulvinar bending deformation depends on the differences in mechanical properties and physiological responses of motor cells on the adaxial versus abaxial sides of the pulvinus. Intriguingly, pulvini simultaneously encompass morphological symmetry and functional asymmetry along the adaxial/abaxial axis. This review provides an introduction to leaf movement and reversible deformation from the perspective of mechanics and molecular genetics.


Asunto(s)
Fabaceae , Pulvino , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Movimiento , Células Vegetales , Hojas de la Planta/genética , Pulvino/genética
4.
Front Plant Sci ; 12: 654655, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995450

RESUMEN

Arabidopsis thaliana transcription factors belonging to the ERFIIId and ERFIIIe subclade (ERFIIId/e) of the APETALA 2/ethylene response factor (AP2/ERF) family enhance primary cell wall (PCW) formation. These transcription factors activate expression of genes encoding PCW-type cellulose synthase (CESA) subunits and other genes for PCW biosynthesis. In this study, we show that fiber-specific expression of ERF035-VP16 and ERF041-VP16, which are VP16-fused proteins of ERFIIId/e members, promote cell wall thickening in a wild-type background with a concomitant increase of alcohol insoluble residues (cell wall content) per fresh weight (FW) and monosaccharides related to the PCW without affecting plant growth. Furthermore, in the ERF041-VP16 lines, the total amount of lignin and the syringyl (S)/guaiacyl (G) ratio decreased, and the enzymatic saccharification yield of glucose from cellulose per fresh weight improved. In these lines, PCW-type CESA genes were upregulated and ferulate 5-hydropxylase1 (F5H1), which is necessary for production of the S unit lignin, was downregulated. In addition, various changes in the expression levels of transcription factors regulating secondary cell wall (SCW) formation were observed. In conclusion, fiber cell-specific ERF041-VP16 improves biomass yield, increases PCW components, and alters lignin composition and deposition and may be suitable for use in future molecular breeding programs of biomass crops.

5.
Biotechnol Biofuels ; 13: 97, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32514309

RESUMEN

BACKGROUND: During the chemical and biochemical decomposition of lignocellulosic biomasses, lignin is highly recalcitrant. Genetic transformation of plants to qualitatively and/or quantitatively modify lignin may reduce these recalcitrant properties. Efficient discovery of genes to achieve lignin manipulation is thus required. RESULTS: To screen for new genes to reduce lignin recalcitrance, we heterologously expressed 50 enzymatic genes under the control of a cinnamate 4-hydroxylase (C4H) gene promoter, derived from a hybrid aspen, which is preferentially active in tissues with lignified cell walls in Arabidopsis plants. These genes encode enzymes that act on metabolites in shikimate, general phenylpropanoid, flavonoid, or monolignol biosynthetic pathways. Among these genes, 30, 18, and 2 originated from plants, bacteria, and fungi, respectively. In our first screening step, 296 independent transgenic plants (T1 generation) harboring single or multiple transgenes were generated from pools of seven Agrobacterium strains used for conventional floral-dip transformation. Wiesner and Mäule staining patterns in the stems of the resultant plants revealed seven and nine plants with apparent abnormalities in the two respective staining analyses. According to genomic PCR and subsequent direct sequencing, each of these 16 plants possessed a gene encoding either coniferaldehyde dehydrogenase (calB), feruloyl-CoA 6'-hydroxylase (F6H1), hydroxycinnamoyl-CoA hydratase/lyase (couA), or ferulate 5-hydroxylase (F5H), with one transgenic plant carrying both calB and F6H1. The effects of these genes on lignin manipulation were confirmed in individually re-created T1 transgenic Arabidopsis plants. While no difference in lignin content was detected in the transgenic lines compared with the wild type, lignin monomeric composition was changed in the transgenic lines. The observed compositional change in the transgenic plants carrying calB, couA, and F5H led to improved sugar release from cell walls after alkaline pretreatment. CONCLUSIONS: Simple colorimetric characterization of stem lignin is useful for simultaneous screening of many genes with the potential to reduce lignin recalcitrance. In addition to F5H, the positive control, we identified three enzyme-coding genes that can function as genetic tools for lignin manipulation. Two of these genes (calB and couA) accelerate sugar release from transgenic lignocelluloses.

6.
J Plant Res ; 133(3): 419-428, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32246281

RESUMEN

Phytoparasitic nematodes parasitize many species of rooting plants to take up nutrients, thus causing severe growth defects in the host plants. During infection, root-knot nematodes induce the formation of a characteristic hyperplastic structure called a root-knot or gall on the roots of host plants. Although many previous studies addressed this abnormal morphogenesis, the underlying mechanisms remain uncharacterized. To analyze the plant-microorganism interaction at the molecular level, we established an in vitro infection assay system using the nematode Meloidogyne incognita and the model plant Arabidopsis thaliana. Time-course mRNA-seq analyses indicated the increased levels of procambium-associated genes in the galls, suggesting that vascular stem cells play important roles in the gall formation. Conversely, genes involved in the formation of secondary cell walls were decreased in galls. A neutral sugar analysis indicated that the level of xylan, which is one of the major secondary cell wall components, was dramatically reduced in the galls. These observations were consistent with the hypothesis of a decrease in the number of highly differentiated cells and an increase in the density of undifferentiated cells lead to gall formation. Our findings suggest that phytoparasitic nematodes modulate the developmental mechanisms of the host to modify various aspects of plant physiological processes and establish a feeding site.


Asunto(s)
Arabidopsis/parasitología , Pared Celular/parasitología , Nematodos/patogenicidad , Enfermedades de las Plantas/parasitología , Raíces de Plantas/parasitología , Animales , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos
7.
Plants (Basel) ; 9(3)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143506

RESUMEN

Plastid ribosome biogenesis is important for plant growth and development. REGULATOR OF FATTY ACID COMPOSITION3 (RFC3) is a member of the bacterial ribosomal protein S6 family and is important for lateral root development. rfc3-2 dramatically reduces the plastid rRNA level and produces lateral roots that lack stem cells. In this study, we isolated a suppressor of rfc three2 (sprt2) mutant that enabled recovery of most rfc3 mutant phenotypes, including abnormal primary and lateral root development and reduced plastid rRNA level. Northern blotting showed that immature and mature plastid rRNA levels were reduced, with the exception of an early 23S rRNA intermediate, in rfc3-2 mutants. These changes were recovered in rfc3-2 sprt2-1 mutants, but a second defect in the processing of 16S rRNA appeared in this line. The results suggest that rfc3 mutants may be defective in at least two steps of plastid rRNA processing, one of which is specifically affected by the sprt2-1 mutation. sprt2-1 mutants had a mutation in CRM FAMILY MEMBER 3b (CFM3b), which encodes a plastid-localized splicing factor. A bimolecular fluorescence complementation (BiFC) assay suggested that RFC3 and SPRT2/CFM3b interact with each other in plastids. These results suggest that RFC3 suppresses the nonspecific action of SPRT2/CFM3b and improves the accuracy of plastid rRNA processing.

8.
Plant Biotechnol (Tokyo) ; 37(4): 471-474, 2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33850436

RESUMEN

The mechanical strength of a plant stem (a load-bearing organ) helps the plant resist drooping, buckling and fracturing. We previously proposed a method for quickly evaluating the stiffness of an inflorescence stem in the model plant Arabidopsis thaliana based on measuring its natural frequency in a free-vibration test. However, the relationship between the stiffness and flexural rigidity of inflorescence stems was unclear. Here, we compared our previously described free-vibration test with the three-point bending test, the most popular method for calculating the flexural rigidity of A. thaliana stems, and examined the extent to which the results were correlated. Finally, to expand the application range, we present an example of a modified free-vibration test. Our results provide a reference for improving estimates of the flexural rigidity of A. thaliana inflorescence stems.

9.
Tree Physiol ; 39(4): 514-525, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30806711

RESUMEN

Wood fibers form thick secondary cell wall (SCW) in xylem tissues to give mechanical support to trees. NAC SECONDARY WALL THICKENING PROMOTING FACTOR3/SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 1 (NST3/SND1) and NST1 were identified as master regulators of SCW formation in xylem fiber cells in the model plant Arabidopsis thaliana. In Populus species, four NST/SND orthologs have been conserved and coordinately control SCW formation in wood fibers and phloem fibers. However, it remains to be elucidated whether SCW formation in other xylem cells, such as ray parenchyma cells and vessel elements, is regulated by NST/SND orthologs in poplar. We knocked out all NST/SND genes in hybrid aspen using the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system and investigated the detailed histological appearance of stem tissues in the knockout mutants. Observation by light microscopy and transmission electron microscopy showed that SCW was severely suppressed in wood fibers, phloem fibers and xylem ray parenchyma cells in the knockout mutants. Although almost all wood fibers lacked SCW, some fiber cells formed thick cell walls. The irregularly cell wall-forming fibers retained primary wall and SCW, and were mainly located in the vicinity of vessel elements. Field emission-scanning electron microscope observation showed that there were no apparent differences in the structural features of pits such as the shape and size between irregularly SCW-forming wood fibers in the knockout mutants and normal wood fibers in wild-type. Cell wall components such as cellulose, hemicellulose and lignin were deposited in the cell wall of irregularly SCW-forming wood fibers in quadruple mutants. Our results indicate that four NST/SND orthologs are master switches for SCW formation in wood fibers, xylem ray parenchyma cells and phloem fibers in poplar, while SCW is still formed in limited wood fibers, which are located at the region adjacent to vessel elements in the knockout mutants.


Asunto(s)
Proteínas de Plantas/metabolismo , Populus/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Pared Celular/ultraestructura , Celulosa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Floema/genética , Floema/fisiología , Floema/ultraestructura , Proteínas de Plantas/genética , Polisacáridos/metabolismo , Populus/fisiología , Populus/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Madera/genética , Madera/fisiología , Madera/ultraestructura , Xilema/genética , Xilema/fisiología , Xilema/ultraestructura
10.
Nat Plants ; 4(10): 777-783, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30287954

RESUMEN

The bulk of a plant's biomass, termed secondary cell walls, accumulates in woody xylem tissues and is largely recalcitrant to biochemical degradation and saccharification1. By contrast, primary cell walls, which are chemically distinct, flexible and generally unlignified2, are easier to deconstruct. Thus, engineering certain primary wall characteristics into xylem secondary walls would be interesting to readily exploit biomass for industrial processing. Here, we demonstrated that by expressing AP2/ERF transcription factors from group IIId and IIIe in xylem fibre cells of mutants lacking secondary walls, we could generate plants with thickened cell wall characteristics of primary cell walls in the place of secondary cell walls. These unique, newly formed walls displayed physicochemical and ultrastructural features consistent with primary walls and had gene expression profiles illustrative of primary wall synthesis. These data indicate that the group IIId and IIIe AP2/ERFs are transcription factors regulating primary cell wall deposition and could form the foundation for exchanging one cell wall type for another in plants.


Asunto(s)
Arabidopsis/metabolismo , Pared Celular/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Xilema/citología , Xilema/metabolismo
11.
Front Plant Sci ; 9: 780, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29946329

RESUMEN

Mechanical properties are rarely used as quantitative indices for the large-scale mutant screening of plants, even in the model plant Arabidopsis thaliana. The mechanical properties of plant stems generally influence their vibrational characteristics. Here, we developed Python-based software, named AraVib, for the high-throughput analysis of free vibrations of plant stems, focusing specifically on Arabidopsis stem vibrations, and its extended version, named AraVibS, to identify mutants with altered mechanical properties. These programs can be used without knowledge of Python and require only an inexpensive handmade setting stand and an iPhone/iPad with a high-speed shooting function for data acquisition. Using our system, we identified an nst1 nst3 double-mutant lacking secondary cell walls in fiber cells and a wrky12 mutant displaying ectopic formation of secondary cell wall compared with wild type by employing only two growth traits (stem height and fresh weight) in addition to videos of stem vibrations. Furthermore, we calculated the logarithmic decrement, the damping ratio, the natural frequency and the stiffness based on the spring-mass-damper model from the video data using AraVib. The stiffness was estimated to be drastically decreased in nst1 nst3, which agreed with previous tensile test results. However, in wrky12, the stiffness was significantly increased. These results demonstrate the effectiveness of our new system. Because our method can be applied in a high-throughput manner, it can be used to screen for mutants with altered mechanical properties.

12.
Front Plant Sci ; 9: 580, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29774040

RESUMEN

Organ size regulation is dependent on the precise spatial and temporal regulation of cell proliferation and cell expansion. A number of transcription factors have been identified that play a key role in the determination of aerial lateral organ size, but their functional relationship to various chromatin modifiers has not been well understood. To understand how leaf size is regulated, we previously isolated the oligocellula1 (oli1) mutant of Arabidopsis thaliana that develops smaller first leaves than the wild type (WT) mainly due to a reduction in the cell number. In this study, we further characterized oli1 leaf phenotypes and identified the OLI1 gene as well as interaction partners of OLI1. Detailed characterizations of leaf development suggested that the cell proliferation rate in oli1 leaf primordia is lower than that in the WT. In addition, oli1 was associated with a slight delay of the progression from the juvenile to adult phases of leaf traits. A classical map-based approach demonstrated that OLI1 is identical to HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15). HOS15/OLI1 encodes a homolog of human transducin ß-like protein1 (TBL1). TBL1 forms a transcriptional repression complex with the histone deacetylase (HDAC) HDAC3 and either nuclear receptor co-repressor (N-CoR) or silencing mediator for retinoic acid and thyroid receptor (SMRT). We found that mutations in HISTONE DEACETYLASE9 (HDA9) and a switching-defective protein 3, adaptor 2, N-CoR, and transcription factor IIIB-domain protein gene, POWERDRESS (PWR), showed a small-leaf phenotype similar to oli1. In addition, hda9 and pwr did not further enhance the oli1 small-leaf phenotype, suggesting that these three genes act in the same pathway. Yeast two-hybrid assays suggested physical interactions, wherein PWR probably bridges HOS15/OLI1 and HDA9. Earlier studies suggested the roles of HOS15, HDA9, and PWR in transcriptional repression. Consistently, transcriptome analyses showed several genes commonly upregulated in the three mutants. From these findings, we propose a possibility that HOS15/OLI1, PWR, and HDA9 form an evolutionary conserved transcription repression complex that plays a positive role in the regulation of final leaf size.

13.
Biol Open ; 7(2)2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29367414

RESUMEN

The plastid evolved from a symbiotic cyanobacterial ancestor and is an essential organelle for plant life, but its developmental roles in roots have been largely overlooked. Here, we show that plastid translation is connected to the stem cell patterning in lateral root primordia. The RFC3 gene encodes a plastid-localized protein that is a conserved bacterial ribosomal protein S6 of ß/γ proteobacterial origin. The rfc3 mutant developed lateral roots with disrupted stem cell patterning and associated with decreased leaf photosynthetic activity, reduced accumulation of plastid rRNAs in roots, altered root plastid gene expression, and changes in expression of several root stem cell regulators. These results suggest that deficiencies in plastid function affect lateral root stem cells. Treatment with the plastid translation inhibitor spectinomycin phenocopied the defective stem cell patterning in lateral roots and altered plastid gene expression observed in the rfc3 mutant. Additionally, when prps17 defective in a plastid ribosomal protein was treated with low concentrations of spectinomycin, it also phenocopied the lateral root phenotypes of rfc3 The spectinomycin treatment and rfc3 mutation also negatively affected symplasmic connectivity between primary root and lateral root primordia. This study highlights previously unrecognized functions of plastid translation in the stem cell patterning in lateral roots.

14.
Plant Biotechnol (Tokyo) ; 35(2): 141-154, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31819716

RESUMEN

The WUSCHEL-RELATED HOMEOBOX1 (WOX1) transcription factor and its homolog PRESSED FLOWER (PRS) are multifunctional regulators of leaf development that act as transcriptional repressors. These genes promote cell proliferation under certain conditions, but the related molecular mechanisms are not well understood. Here, we present a new function for WOX1 in cell proliferation. To identify the WOX1 downstream genes, we performed a microarray analysis of shoot apices of transgenic Arabidopsis thaliana lines harboring [35Sp::WOX1-glucocorticoid receptor (GR)] in which the WOX1 function was temporarily enhanced by dexamethasone. The downregulated genes were significantly enriched for the Gene Ontology term "response to auxin stimulus", whereas the significantly upregulated genes contained auxin transport-associated PIN1 and AUX1 and the auxin response factor MP, which are involved in formation of auxin response maxima. Simultaneous treatments of synthetic auxin and dexamethasone induced the formation of green compact calli and the unorganized proliferation of cells in the hypocotyl. A microarray analysis of 35Sp::WOX1-GR plants treated with indole-3-acetic acid and dexamethasone revealed that WOX1 and auxin additively influenced their common downstream genes. Furthermore, in the presence of an auxin-transport inhibitor, cell proliferation during leaf initiation was suppressed in the prs mutant but induced in a broad region of the peripheral zone of the shoot apical meristem in the ectopic WOX1-expressing line FILp::WOX1. Thus, our results clarify the additive effect of WOX1/PRS and auxin on their common downstream genes and highlight the importance of the balance between their functions in controlling cell proliferation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...