Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Oral Biosci ; 66(1): 90-97, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246420

RESUMEN

OBJECTIVES: The purpose of this study was to perform morphological and immunohistochemical (IHC) analysis of the submandibular glands (SMGs) in early development in Apert syndrome model mice (Ap mice). METHODS: ACTB-Cre homozygous mice were mated with fibroblast growth factor receptor 2 (Fgfr2+/Neo-S252W) mice; ACTB-Cre heterozygous mice (ACTB-Cre mice) at embryonic day (E) 13.5 served as the control group, and Fgfr2+/S252W mice (Ap mice) served as the experimental group. Hematoxylin and eosin (H&E) staining was performed on SMGs; Total SMG area and epithelial area were determined, and the epithelial occupancy ratio was calculated. Immunostaining was performed to assess the localization of FGF signaling-related proteins. Next, bromodeoxyuridine (BrdU)-positive cells were evaluated to assess cell proliferation. Finally, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining was performed to assess apoptosis in SMGs. RESULTS: The epithelial occupancy ratio was significantly higher in SMGs of Ap mice compared with that in SMGs of controls. FGF7 and bone morphogenetic protein 4 (BMP4) exhibited different localizations in SMGs of Ap mice compared with SMGs of controls. Cell proliferation was higher in SMGs of Ap mice compared with that of controls; however, apoptosis did not different significantly between the two groups. CONCLUSION: Our results suggest that enhanced FGF signaling conferred by missense mutations in FGFR2 promotes branching morphogenesis in SMGs of Ap mice.


Asunto(s)
Acrocefalosindactilia , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Animales , Ratones , Acrocefalosindactilia/genética , Morfogénesis/genética , Mutación , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Glándula Submandibular
2.
Cell Tissue Res ; 392(3): 631-641, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36781481

RESUMEN

Mammalian taste bud cells are composed of several distinct cell types and differentiated from surrounding tongue epithelial cells. However, the detailed mechanisms underlying their differentiation have yet to be elucidated. In the present study, we examined an Ascl1-expressing cell lineage using circumvallate papillae (CVP) of newborn mice and taste organoids (three-dimensional self-organized tissue cultures), which allow studying the differentiation of taste bud cells in fine detail ex vivo. Using lineage-tracing analysis, we observed that Ascl1 lineage cells expressed type II and III taste cell markers both CVP of newborn mice and taste organoids. However, the coexpression rate in type II cells was lower than that in type III cells. Furthermore, we found that the generation of the cells which express type II and III cell markers was suppressed in taste organoids lacking Ascl1-expressing cells. These findings suggest that Ascl1-expressing precursor cells can differentiate into both type III and a subset of type II taste cells.


Asunto(s)
Papilas Gustativas , Ratones , Animales , Gusto , Lengua , Diferenciación Celular , Organoides , Mamíferos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
3.
J Exp Zool B Mol Dev Evol ; 340(7): 455-468, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36464775

RESUMEN

Gars and bichirs develop scales and teeth with ancient actinopterygian characteristics. Their scale surface and tooth collar are covered with enamel, also known as ganoin, whereas the tooth cap is equipped with an enamel-like tissue, acrodin. Here, we investigated the formation and mineralization of the ganoin and acrodin matrices in spotted gar, and the evolution of the scpp5, ameloblastin (ambn), and enamelin (enam) genes, which encode matrix proteins of ganoin. Results suggest that, in bichirs and gars, all these genes retain structural characteristics of their orthologs in stem actinopterygians, presumably reflecting the presence of ganoin on scales and teeth. During scale formation, Scpp5 and Enam were initially found in the incipient ganoin matrix and the underlying collagen matrix, whereas Ambn was detected mostly in a surface region of the well-developed ganoin matrix. Although collagen is the principal acrodin matrix protein, Scpp5 was detected within the matrix. Similarities in timings of mineralization and the secretion of Scpp5 suggest that acrodin evolved by the loss of the matrix secretory stage of ganoin formation: dentin formation is immediately followed by the maturation stage. The late onset of Ambn secretion during ganoin formation implies that Ambn is not essential for mineral ribbon formation, the hallmark of the enamel matrix. Furthermore, Scpp5 resembles amelogenin that is not important for the initial formation of mineral ribbons in mammals. It is thus likely that the evolution of ENAM was vital to the origin of the unique mineralization process of the enamel matrix.


Asunto(s)
Proteínas del Esmalte Dental , Diente , Animales , Peces/genética , Amelogenina/genética , Amelogenina/metabolismo , Minerales , Colágeno , Proteínas del Esmalte Dental/genética , Mamíferos
4.
Biochem Biophys Res Commun ; 642: 75-82, 2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36566565

RESUMEN

The right and left mandibular processes derived from the first branchial arch grow toward the midline and fuse to create the rostral tip region of the mandible during mandibular development. Severe and mild cases of failure in this process results in rare median cleft of the lower lip and cleft chin, respectively. The detailed molecular mechanisms of mandibular tip formation are unknown. We hypothesize that the Msx1 gene is involved in mandibular tip development, because Msx1 has a central role in other craniofacial morphogenesis processes, such as teeth and the secondary palate development. Normal Msx1 expression was observed in the rostral end of the developing mandible; however, a reduced expression of Msx1 was observed in the soft tissue of the mandibular tip than in the lower incisor bud region. The rostral tip of the right and left mandibular processes was unfused in both control and Msx1-null (Msx1-/-) mice at embryonic day (E) 12.5; however, a complete fusion of these processes was observed at E13.5 in the control. The fused processes exhibited a conical shape in the control, whereas the same region remained bifurcated in Msx1-/-. This phenotype occurred with 100% penetrance and was not restored at subsequent stages of development. Furthermore, Meckel's cartilage in addition to the outline surface soft tissues was also unfused and bifurcated in Msx1-/- from E14.5 onward. The expression of phosho-Smad1/5, which is a mediator of bone morphogenetic protein (Bmp) signaling, was downregulated in the mandibular tip of Msx1-/- at E12.5 and E13.5, probably due to the downregulated Bmp4 expression in the neighboring lower incisor bud. Cell proliferation was significantly reduced in the midline region of the mandibular tip in Msx1-/- at the same developmental stages in which downregulation of pSmad was observed. Our results indicate that Msx1 is indispensable for proper mandibular tip development.


Asunto(s)
Factor de Transcripción MSX1 , Diente , Ratones , Animales , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Mandíbula , Diente/metabolismo , Morfogénesis/genética , Transducción de Señal
5.
Regen Ther ; 21: 460-468, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36313391

RESUMEN

Introduction: The role of osteopontin (OPN) following severe injury remains to be elucidated, especially its relationship with type I collagen (encoded by the Col1a1 gene) secretion by newly-differentiated odontoblast-like cells (OBLCs). In this study, we examined the role of OPN in the process of reparative dentin formation with a focus on reinnervation and revascularization after tooth replantation in Opn knockout (KO) and wild-type (WT) mice. Methods: Maxillary first molars of 2- and 3-week-old-Opn KO and WT mice (Opn KO 2W, Opn KO 3W, WT 2W, and WT 3W groups) were replanted, followed by fixation 3-56 days after operation. Following micro-computed tomography analysis, the decalcified samples were processed for immunohistochemistry for Ki67, Nestin, PGP 9.5, and CD31 and in situ hybridization for Col1a1. Results: An intense inflammatory reaction occurred to disrupt pulpal healing in the replanted teeth of the Opn KO 3W group, whereas dental pulp achieved healing in the Opn KO 2W and WT groups. The tertiary dentin in the Opn KO 3W group was significantly decreased in area compared with the Opn KO 2W and WT groups, with a significantly low percentage of Nestin-positive, newly-differentiated OBLCs during postoperative days 7-14. In the Opn KO 3W group, the blood vessels were significantly decreased in area and pulp healing was disturbed with a failure of pulpal revascularization and reinnervation. Conclusions: OPN is necessary for proper reinnervation and revascularization to deposit reparative dentin following severe injury within the dental pulp of erupted teeth with advanced root development.

6.
BMC Cancer ; 22(1): 936, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36038818

RESUMEN

BACKGROUND: Melanoma is a malignant tumor characterized by high proliferation and aggressive metastasis. To address the molecular mechanisms of the proto-oncogene, Rous sarcoma oncogene (Src), which is highly activated and promotes cell proliferation, migration, adhesion, and metastasis in melanoma. Plectin, a cytoskeletal protein, has recently been identified as a Src-binding protein that regulates Src activity in osteoclasts. Plectin is a candidate biomarker of certain tumors because of its high expression and the target of anti-tumor reagents such as ruthenium pyridinecarbothioamide. The molecular mechanisms by which plectin affects melanoma is still unclear. In this study, we examined the role of plectin in melanoma tumor formation. METHODS: We used CRISPR/Cas9 gene editing to knock-out plectin in B16 mouse melanoma cells. Protein levels of plectin and Src activity were examined by western blotting analysis. In vivo tumor formation was assessed by subcutaneous injection of B16 cells into nude mice and histological analysis performed after 2 weeks by Hematoxylin-Eosin (H&E) staining. Cell proliferation was evaluated by direct cell count, cell counting kit-8 assays, cyclin D1 mRNA expression and Ki-67 immunostaining. Cell aggregation and adhesion were examined by spheroid formation, dispase-based dissociation assay and cell adhesion assays. RESULTS: In in vivo tumor formation assays, depletion of plectin resulted in low-density tumors with large intercellular spaces. In vitro experiments revealed that plectin-deficient B16 cells exhibit reduced cell proliferation and reduced cell-to-cell adhesion. Since Src activity is reduced in plectin-deficient melanomas, we examined the relationship between plectin and Src signaling. Src overexpression in plectin knockout B16 cells rescued cell proliferation and improved cell-to-cell adhesion and cell to extracellular matrix adhesion. CONCLUSION: These results suggest that plectin plays critical roles in tumor formation by promoting cell proliferation and cell-to-cell adhesion through Src signaling activity in melanoma cells.


Asunto(s)
Melanoma Experimental , Sarcoma Aviar , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Melanoma Experimental/metabolismo , Ratones , Ratones Desnudos , Oncogenes , Plectina/genética , Sarcoma Aviar/genética
7.
J Oral Biosci ; 64(1): 77-84, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35031478

RESUMEN

OBJECTIVES: Original odontoblasts and regenerated odontoblast-like cells (OBLCs) may differently regulate Nestin expression. This study aimed to investigate the role of the subodontoblastic layer (SOBL) using green fluorescent protein (GFP) reactivity in the process of OBLC differentiation after tooth drilling in Nestin-enhanced GFP transgenic mice. METHODS: A groove-shaped cavity was prepared on the mesial surface of the maxillary first molars of 5- or 6-week-old mice under deep anesthesia. Immunohistochemical staining for Nestin and GFP and Nestin in situ hybridization were conducted on the sections obtained at 1-14 days postoperative. RESULTS: Odontoblasts showed intense endogenous Nestin protein and mRNA expression, whereas the coronal SOBL cells showed a Nestin-GFP-positive reaction in the control groups. The injured odontoblasts had significantly decreased Nestin immunoreactivity as well as decreased expression of Nestin mRNA 1-2 days after the injury; subsequently, newly differentiated OBLCs were arranged along the pulp-dentin border, with significantly increased Nestin expression as well as increased expression of Nestin mRNA on days 3-5 to form reparative dentin. Nestin-GFP-positive cells at the pulp-dentin border significantly increased in number on days 1 and 2. GFP(+)/Nestin(+) and GFP(-)/Nestin(+) cells were intermingled in the newly differentiated OBLCs. CONCLUSIONS: The commitment of Nestin-GFP-positive cells into Nestin-positive OBLCs suggests that the restriction of endogenous Nestin protein and mRNA expression in the static SOBL cells was removed by exogenous stimuli, resulting in their migration along the pulp-dentin border and their differentiation into OBLCs.


Asunto(s)
Odontoblastos , Animales , Diferenciación Celular/fisiología , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Transgénicos , Nestina/genética , ARN Mensajero/metabolismo
8.
Bone ; 154: 116210, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34592494

RESUMEN

Amelogenesis consists of secretory, transition, maturation, and post-maturation stages, and the morphological changes of ameloblasts at each stage are closely related to their function. p130 Crk-associated substrate (Cas) is a scaffold protein that modulates essential cellular processes, including cell adhesion, cytoskeletal changes, and polarization. The expression of p130Cas was observed from the secretory stage to the maturation stage in ameloblasts. Epithelial cell-specific p130Cas-deficient (p130CasΔepi-) mice exhibited enamel hypomineralization with chalk-like white mandibular incisors in young mice and attrition in aged mouse molars. A micro-computed tomography analysis and Vickers micro-hardness testing showed thinner enamel, lower enamel mineral density and hardness in p130CasΔepi- mice in comparison to p130Casflox/flox mice. Scanning electron microscopy, and an energy dispersive X-ray spectroscopy analysis indicated the disturbance of the enamel rod structure and lower Ca and P contents in p130CasΔepi- mice, respectively. The disorganized arrangement of ameloblasts, especially in the maturation stage, was observed in p130CasΔepi- mice. Furthermore, expression levels of enamel matrix proteins, such as amelogenin and ameloblastin in the secretory stage, and functional markers, such as alkaline phosphatase and iron accumulation, and Na+/Ca2++K+-exchanger in the maturation stage were reduced in p130CasΔepi- mice. These findings suggest that p130Cas plays important roles in amelogenesis (197 words).


Asunto(s)
Amelogénesis , Proteína Sustrato Asociada a CrK/metabolismo , Proteínas del Esmalte Dental , Ameloblastos/metabolismo , Animales , Proteínas del Esmalte Dental/metabolismo , Células Epiteliales/metabolismo , Ratones , Microtomografía por Rayos X
9.
J Oral Biosci ; 63(4): 420-428, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34492379

RESUMEN

OBJECTIVES: Myogenic differentiation 1 (Myod1) is involved in the expression of taste receptor type 1 member 1 (Tas1r1) during myogenic differentiation. Further, the target genes of Myod1 participate in transcriptional control, muscle development, and synaptic function. We examined, for the first time, the function of Myod1 in the transcriptional regulation of Tas1r1. METHODS: ENCODE chromatin immunoprecipitation and sequencing (ChIP-seq) data of myogenically differentiated C2C12 cells were analyzed to identify the Myod1 and transcription factor 12 (Tcf12) binding sites in the Tas1r1 promoter region. Luciferase reporter assays, DNA affinity precipitation assays, and co-immunoprecipitation assays were also performed to identify the functions of Myod1, Tcf12, and Krüppel-like factor 5 (Klf5). RESULTS: Based on ENCODE ChIP-seq, Myod1 bound to the Tas1r1 promoter region containing E-boxes 1-3. Luciferase reporter assays revealed that site-directed E-box1 mutations significantly reduced promoter activation induced by Myod1 overexpression. According to the DNA affinity precipitation assay and co-immunoprecipitation assay, Myod1 formed a heterodimer with Tcf12 and bound to E-box1. Further, Klf5 bound to the GT box near E-box1, activating Tas1r1 expression. CONCLUSIONS: During myogenic differentiation, the Myod1/Tcf12 heterodimer, in collaboration with Klf5, binds to E-box1 and activates Tas1r1 expression.


Asunto(s)
Proteína MioD , Gusto , Animales , Expresión Génica , Ratones , Desarrollo de Músculos/genética , Proteína MioD/genética , Factores de Transcripción/genética
10.
Cleft Palate Craniofac J ; 58(6): 697-706, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34047208

RESUMEN

OBJECTIVE: Cleft palate is among the most frequent congenital defects in humans. While gene-environment multifactorial threshold models have been proposed to explain this cleft palate formation, only a few experimental models have verified this theory. This study aimed to clarify whether gene-environment interaction can cause cleft palate through a combination of specific genetic and environmental factors. METHODS: Msx1 heterozygosity in mice (Msx1+/-) was selected as a genetic factor since human MSX1 gene mutations may cause nonsyndromic cleft palate. As an environmental factor, hypoxic stress was induced in pregnant mice by administration of the antiepileptic drug phenytoin, a known arrhythmia inducer, during palatal development from embryonic day (E) 11 to E14. Embryos were dissected at E13 for histological analysis or at E17 for recording of the palatal state. RESULTS: Phenytoin administration downregulated cell proliferation in palatal processes in both wild-type and Msx1+/- embryos. Bone morphogenetic protein 4 (Bmp4) expression was slightly downregulated in the anterior palatal process of Msx1+/- embryos. Although Msx1+/- embryos do not show cleft palate under normal conditions, phenytoin administration induced a significantly higher incidence of cleft palate in Msx1+/- embryos compared to wild-type littermates. CONCLUSION: Our data suggest that cleft palate may occur because of the additive effects of Bmp4 downregulation as a result of Msx1 heterozygosity and decreased cell proliferation upon hypoxic stress. Human carriers of MSX1 mutations may have to take more precautions during pregnancy to avoid exposure to environmental risks.


Asunto(s)
Fisura del Paladar , Factor de Transcripción MSX1 , Estrés Oxidativo , Animales , Fisura del Paladar/inducido químicamente , Fisura del Paladar/genética , Factor de Transcripción MSX1/genética , Ratones , Hueso Paladar , Fenitoína , Transducción de Señal
11.
iScience ; 24(1): 102023, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33506188

RESUMEN

We resolve debate over the evolution of vertebrate hypermineralized tissues through analyses of matrix protein-encoding secretory calcium-binding phosphoprotein (SCPP) genes and phylogenetic inference of hypermineralized tissues. Among these genes, AMBN and ENAM are found in both sarcopterygians and actinopterygians, whereas AMEL and SCPP5 are found only in sarcopterygians and actinopterygians, respectively. Actinopterygian AMBN, ENAM, and SCPP5 are expressed during the formation of hypermineralized tissues on scales and teeth: ganoin, acrodin, and collar enamel in gar, and acrodin and collar enameloid in zebrafish. Our phylogenetic analyses indicate the emergence of an ancestral enamel in stem-osteichthyans, whereas ganoin emerged in stem-actinopterygians and true enamel in stem-sarcopterygians. Thus, AMBN and ENAM originated in concert with ancestral enamel, SCPP5 evolved in association with ganoin, and AMEL evolved with true enamel. Shifts in gene expression domain and timing explain the evolution of different hypermineralized tissues. We propose that hypermineralized tissues in osteichthyans coevolved with matrix SCPP genes.

12.
Cell Tissue Res ; 383(2): 667-675, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32960355

RESUMEN

Mammalian taste bud cells have a limited lifespan and differentiate into type I, II, and III cells from basal cells (type IV cells) (postmitotic precursor cells). However, little is known regarding the cell lineage within taste buds. In this study, we investigated the cell fate of Mash1-positive precursor cells utilizing the Cre-loxP system to explore the differentiation of taste bud cells. We found that Mash1-expressing cells in Ascl1CreERT2::CAG-floxed tdTomato mice differentiated into taste bud cells that expressed aromatic L-amino acid decarboxylase (AADC) and carbonic anhydrase IV (CA4) (type III cell markers), but did not differentiate into most of gustducin (type II cell marker)-positive cells. Additionally, we found that Mash1-expressing cells could differentiate into phospholipase C ß2 (PLCß2)-positive cells, which have a shorter lifespan compared with AADC- and CA4-positive cells. These results suggest that Mash1-positive precursor cells could differentiate into type III cells, but not into most of type II cells, in the taste buds.


Asunto(s)
Envejecimiento/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Fosfolipasa C beta/metabolismo , Papilas Gustativas/citología , Papilas Gustativas/metabolismo , Animales , Biomarcadores/metabolismo , Ratones
13.
FEBS Open Bio ; 10(8): 1612-1623, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32592329

RESUMEN

Osteoblasts release adenosine triphosphate (ATP) out of the cell following mechanical stress. Although it is well established that extracellular ATP affects bone metabolism via P2 receptors [such as purinergic receptor P2X7 (P2X7R) and purinergic receptor P2Y2 (P2Y2R)], the mechanism of ATP release from osteoblasts remains unknown. Recently, a vesicular nucleotide transporter [VNUT, solute carrier family 17 member 9 (SLC17A9)] that preserves ATP in vesicles has been identified. The purpose of this study was to elucidate the role of VNUT in osteoblast bone metabolism. mRNA and protein expression of VNUT were confirmed in mouse bone and in osteoblasts by quantitative real-time PCR (qPCR) and immunohistochemistry. Next, when compressive force was applied to MC3T3-E1 cells by centrifugation, the expression of Slc17a9, P2x7r, and P2y2r was increased concomitant with an increase in extracellular ATP levels. Furthermore, compressive force decreased the osteoblast differentiation capacity of MC3T3-E1 cells. shRNA knockdown of Slc17a9 in MC3T3-E1 cells reduced levels of extracellular ATP and also led to increased osteoblast differentiation after the application of compressive force as assessed by qPCR analysis of osteoblast markers such as Runx2, Osterix, and alkaline phosphatase (ALP) as well as ALP activity. Consistent with these observations, knockdown of P2x7r or P2y2r by siRNA partially rescued the downregulation of osteoblast differentiation markers, caused by mechanical loading. In conclusion, our results demonstrate that VNUT is expressed in osteoblasts and that VNUT inhibits osteoblast differentiation in response to compressive force by mechanisms related to ATP release and P2X7R and/or P2Y2R activity.


Asunto(s)
Proteínas de Transporte de Nucleótidos/metabolismo , Osteoblastos/metabolismo , Células 3T3 , Animales , Diferenciación Celular , Células Cultivadas , Ratones , Proteínas de Transporte de Nucleótidos/genética , Osteoblastos/citología
14.
Development ; 147(21)2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32467233

RESUMEN

Nonsyndromic clefts of the lip and palate are common birth defects resulting from gene-gene and gene-environment interactions. Mutations in human MSX1 have been linked to orofacial clefting and we show here that Msx1 deficiency causes a growth defect of the medial nasal process (Mnp) in mouse embryos. Although this defect alone does not disrupt lip formation, Msx1-deficient embryos develop a cleft lip when the mother is transiently exposed to reduced oxygen levels or to phenytoin, a drug known to cause embryonic hypoxia. In the absence of interacting environmental factors, the Mnp growth defect caused by Msx1 deficiency is modified by a Pax9-dependent 'morphogenetic regulation', which modulates Mnp shape, rescues lip formation and involves a localized abrogation of Bmp4-mediated repression of Pax9 Analyses of GWAS data revealed a genome-wide significant association of a Gene Ontology morphogenesis term (including assigned roles for MSX1, MSX2, PAX9, BMP4 and GREM1) specifically for nonsyndromic cleft lip with cleft palate. Our data indicate that MSX1 mutations could increase the risk for cleft lip formation by interacting with an impaired morphogenetic regulation that adjusts Mnp shape, or through interactions that inhibit Mnp growth.


Asunto(s)
Hipoxia/embriología , Hipoxia/metabolismo , Labio/embriología , Factor de Transcripción MSX1/deficiencia , Morfogénesis , Animales , Proteína Morfogenética Ósea 4/metabolismo , Labio Leporino/embriología , Labio Leporino/genética , Labio Leporino/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Genoma , Proteínas de Homeodominio/metabolismo , Humanos , Hipoxia/genética , Factor de Transcripción MSX1/genética , Factor de Transcripción MSX1/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Morfogénesis/genética , Mutación/genética , Nariz/embriología , Oxígeno/metabolismo , Factor de Transcripción PAX9/metabolismo , Fenitoína , Respiración , Regulación hacia Arriba/genética
15.
Regen Ther ; 14: 59-71, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31988996

RESUMEN

INTRODUCTION: Human periodontal ligament mesenchymal stem cells (hPDLMSCs) have been known that they play important roles in homeostasis and regeneration of periodontal tissues. Additionally, spheroids are superior to monolayer-cultured cells. We investigated the characteristics and potential of periodontal tissue regeneration in co-cultured spheroids of hPDLMSCs and human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. METHODS: Co-cultured spheroids were prepared with cell ratios of hPDLMSCs: HUVECs = 1:1, 1:2, and 2:1, using microwell chips. Real-time polymerase chain reaction (PCR) analysis, Enzyme-Linked Immuno Sorbent Assay (ELISA), and nodule formation assay were performed to examine the properties of co-cultured spheroids. Periodontal tissue defects were prepared in the maxillary first molars of rats and subjected to transplantation assay. RESULTS: The expression levels of stemness markers, vascular endothelial growth factor (VEGF), osteogenesis-related genes were up-regulated in co-cultured spheroids, compared with monolayer and spheroid-cultured hPDLMSCs. The nodule formation was also increased in co-cultured spheroids, compared with monolayer and spheroid cultures of hPDLMSCs. Treatment with co-cultured spheroids enhanced new cementum formation after 4 or 8 weeks of transplantation, although there was no significant difference in the new bone formation between co-cultured spheroids and hPDLMSC spheroids. CONCLUSIONS: We found that co-cultured spheroids enhance the periodontal tissue regeneration. Co-cultured spheroids of hPDLMSCs and HUVECs may be a useful therapy that can induce periodontal tissue regeneration.

16.
J Endod ; 46(1): 89-96, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31740066

RESUMEN

INTRODUCTION: Although dentin matrix protein 1 (DMP1) and osteopontin (OPN) act as substrates and signaling molecules for odontoblastlike cell differentiation after tooth injury, the mutual interaction between these proteins in the mechanism of odontoblastlike cell differentiation remains to be clarified. This study aimed to elucidate the role of DMP1 and OPN in regulating odontoblastlike cell differentiation after tooth injury. METHODS: A groove-shaped cavity was prepared on the mesial surface of the upper first molars in wild-type and Opn knockout (KO) mice. The demineralized paraffin sections were processed for immunohistochemistry for nestin and DMP1 and in situ hybridization for Dmp1. For the in vitro assay, the experiments of organ culture for evaluating dentin-pulp complex regeneration using small interfering RNA treatment were performed. RESULTS: Once preexisting odontoblasts died, nestin-positive newly differentiated odontoblastlike cells were arranged along the pulp-dentin border and began to express DMP1/Dmp1. In Opn KO mice, the expression of DMP1/Dmp1 was up-regulated compared with that of wild-type mice. The in vitro assay showed that the gene suppression of Dmp1 by small interfering RNA showed a tendency to decrease the differentiation rate of odontoblastlike cells from 70.1% to 52.2% in wild-type teeth. In addition, the suppression of Dmp1 in Opn KO teeth tended to lead to the inhibition of odontoblastlike cell differentiation. CONCLUSIONS: These results suggest that the expression of Dmp1 is up-regulated in Opn KO mice both in vivo and in vitro, and DMP1 compensates for the lack of OPN in regulating odontoblastlike cell differentiation after tooth injury.


Asunto(s)
Diferenciación Celular , Proteínas de la Matriz Extracelular , Osteopontina/metabolismo , Traumatismos de los Dientes , Animales , Dentina , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Odontoblastos , Fosfoproteínas
17.
Development ; 146(18)2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444215

RESUMEN

Developmental defects affecting the heart and aortic arch arteries are a significant phenotype observed in individuals with 22q11 deletion syndrome and are caused by a microdeletion on chromosome 22q11. TBX1, one of the deleted genes, is expressed throughout the pharyngeal arches and is considered a key gene, when mutated, for the arch artery defects. Pax9 is expressed in the pharyngeal endoderm and is downregulated in Tbx1 mutant mice. We show here that Pax9-deficient mice are born with complex cardiovascular malformations that affect the outflow tract and aortic arch arteries with failure of the 3rd and 4th pharyngeal arch arteries to form correctly. Transcriptome analysis indicated that Pax9 and Tbx1 may function together, and mice double heterozygous for Tbx1/Pax9 presented with a significantly increased incidence of interrupted aortic arch when compared with Tbx1 heterozygous mice. Using a novel Pax9Cre allele, we demonstrated that the site of this Tbx1-Pax9 genetic interaction is the pharyngeal endoderm, therefore revealing that a Tbx1-Pax9-controlled signalling mechanism emanating from the pharyngeal endoderm is required for crucial tissue interactions during normal morphogenesis of the pharyngeal arch artery system.


Asunto(s)
Arterias/embriología , Región Branquial/irrigación sanguínea , Sistema Cardiovascular/embriología , Endodermo/embriología , Morfogénesis , Factor de Transcripción PAX9/metabolismo , Faringe/embriología , Proteínas de Dominio T Box/metabolismo , Animales , Sistema Cardiovascular/metabolismo , Diferenciación Celular/genética , Embrión de Mamíferos/anomalías , Eliminación de Gen , Redes Reguladoras de Genes , Heterocigoto , Ratones Endogámicos C57BL , Modelos Biológicos , Mutación/genética , Cresta Neural/patología , Factor de Transcripción PAX9/deficiencia , Unión Proteica , Transducción de Señal
18.
J Oral Biosci ; 61(1): 55-63, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30929803

RESUMEN

OBJECTIVES: Continuously growing rodent incisors have an apically located epithelial stem cell compartment, known as an "apical bud" (AB). Few studies have described the morphological features of ABs and stem cell niches in continuously growing premolars/molars. We attempted to clarify the relationship between the three-dimensional configuration of ABs and the stem cell niches in guinea pig cheek teeth. METHODS: We perfusion-fixed four-week-old guinea pigs, then decalcified their premolars/molars to produce serial paraffin sections, which we immunostained for Sox2. We reconstructed the serial sections using image processing and analysis software. We processed undecalcified samples for scanning electron microscopy by KOH digestion. RESULTS: Two types of epithelia with M and Δ shapes surrounded the S-shaped dental papilla in the apical region of the premolars/molars, and there were three Sox2-positive epithelial bulges above the M- and Δ-shaped epithelia. Sox2-positive epithelial stem cell niches were restricted to the apical side, and cell proliferation and differentiation immediately proceeded in the crown-analogue dentin. The Sox2-positive epithelial stem cell niches were sparsely distributed and extended to the occlusal side. We also detected continuously proliferating cells in the cervical loop and Hertwig's epithelial root sheath of the root-analogue dentin. CONCLUSIONS: Our findings suggest that guinea pig cheek teeth have three ABs, and the complex configuration of these types of teeth may be attributed to the prompt formation of crown-analogue dentin followed by the long-term formation of root-analogue dentin.


Asunto(s)
Diente Molar , Nicho de Células Madre , Animales , Mejilla , Cobayas , Incisivo , Corona del Diente
19.
Biomed Res ; 40(2): 67-78, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30982802

RESUMEN

T1R1 and T1R3 are receptors expressed in taste buds that detect L-amino acids. These receptors are also expressed throughout diverse organ systems, such as the digestive system and muscle tissue, and are thought to function as amino acid sensors. The mechanism of transcriptional regulation of the mouse T1R1 gene (Tas1r1) has not been determined; therefore, in this study, we examined the function of Tas1r1 promoter in the mouse myoblast cell line, C2C12. Luciferase reporter assays showed that a 148-bp region upstream of the ATG start codon of Tas1r1 had a promoter activity. The GT box in the Tas1r1 promoter was conserved in the dog, human, mouse, and pig. Site-directed mutagenesis of this GT box significantly reduced the promoter activation. The GT box in promoters is a recurring motif for Sp/KLF family members. RNAi-mediated depletion of Sp4 and Klf5 decreased Tas1r1 expression, while overexpression of Klf5, but not Sp4, significantly increased Tas1r1 expression. The ENCODE data of chromatin immunoprecipitation and sequencing (ChIP-seq) showed that Klf5 bound to the GT box during the myogenic differentiation. Furthermore, the Klf5 knockout cell lines led to a considerable decrease in the levels of Tas1r1 expression. Collectively, these results showed that Klf5 binds to the GT box in the Tas1r1 promoter and regulates Tas1r1 expression in C2C12 cells.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/genética , Mioblastos/metabolismo , Regiones Promotoras Genéticas , Receptores Acoplados a Proteínas G/genética , Factor de Transcripción Sp4/genética , Sitio de Iniciación de la Transcripción , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular , Línea Celular , Secuencia Conservada , Perros , Regulación de la Expresión Génica , Genes Reporteros , Humanos , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Desarrollo de Músculos/genética , Mioblastos/citología , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Factor de Transcripción Sp4/antagonistas & inhibidores , Factor de Transcripción Sp4/metabolismo , Porcinos
20.
Bone ; 121: 29-41, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30611922

RESUMEN

Endochondral ossification is important for skeletal development. Recent findings indicate that the p65 (RelA) subunit, a main subunit of the classical nuclear factor-κB (NF-κB) pathway, plays essential roles in chondrocyte differentiation. Although several groups have reported that the alternative NF-κB pathway also regulates bone homeostasis, the role of the alternative NF-κB pathway in chondrocyte development is still unclear. Here, we analyzed the in vivo function of the alternative pathway on endochondral ossification using p100-deficient (p100-/-) mice, which carry a homozygous deletion of the COOH-terminal ankyrin repeats of p100 but still express functional p52 protein. The alternative pathway was activated during the periarticular stage in wild-type mice. p100-/- mice exhibited dwarfism, and histological analysis of the growth plate revealed abnormal arrangement of chondrocyte columns and a narrowed hypertrophic zone. Consistent with these observations, the expression of hypertrophic chondrocyte markers, type X collagen (ColX) or matrix metalloproteinase 13, but not early chondrogenic markers, such as Col II or aggrecan, was suppressed in p100-/- mice. An in vivo BrdU tracing assay clearly demonstrated less proliferative activity in chondrocytes in p100-/- mice. These defects were partly rescued when the RelB gene was deleted in p100-/- mice. Taken together, the alternative NF-κB pathway may regulate chondrocyte proliferation and differentiation to maintain endochondral ossification.


Asunto(s)
FN-kappa B/metabolismo , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular/genética , Proliferación Celular/fisiología , Condrocitos/metabolismo , Condrogénesis/genética , Condrogénesis/fisiología , Inmunohistoquímica , Hibridación in Situ , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis/genética , Osteogénesis/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/fisiología , Esqueleto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...