Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 47(12): 9715-9723, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33191478

RESUMEN

Magnesium sulfide nanoparticles (MgS NPs) is a nanomaterial that has an important place in diagnosis, treatment, diagnosis, and drug delivery systems. Neuroblastoma, a type of brain cancer, is an extremely difficult cancer to treat with today's treatment options. This study was carried out to determine the cytotoxic, oxidant, and antioxidant effects on the neuroblastoma cancer line (SH-SY5Y cell line) along with the green synthesis and characterization of MgS NPs structures. MgS NPs were synthesized by green synthesis using Na2S and Punica granatum, a cleaner method for toxic effects, and characterized using Scanning Electron Microscopy, Fourier Transform Infrared spectroscopy, X-Ray diffraction methods. In cell culture, SH-SY5Y cells were grown in a suitable nutrient medium under favorable conditions. Five different doses of MgS NPs (10, 25, 50, 75, and 100 µg/mL) were applied to the cell line for 24 h. The analysis of the MgS NPs applications was performed with MTT cytotoxicity test and total oxidant and total antioxidant tests. According to the data obtained, 75 µg/mL MgS NPs application decreased cancer cell viability up to 48.54%. MgS NPs exhibited a dose-dependent effect on the SH-SY5Y cell line. Also, it was determined that MgS NPs increased oxidant activity in neuroblastoma cells, which was compatible with the cytotoxicity test. As a result, MgS NPs exhibited an effective activity on the neuroblastoma cell line. It was clearly seen that NPs obtained by green synthesis prevented the related cancer line from proliferating.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas/patología , Supervivencia Celular/efectos de los fármacos , Cisplatino , Sulfato de Magnesio , Nanopartículas del Metal , Neuroblastoma/patología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Cisplatino/administración & dosificación , Cisplatino/farmacología , Tecnología Química Verde , Humanos , Sulfato de Magnesio/farmacología , Neuroblastoma/tratamiento farmacológico , Granada (Fruta)/química
2.
Cytotechnology ; 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33095405

RESUMEN

Neuroblastoma is one of the most widely seen under the age of 15 tumors that occur in the adrenal medulla and sympathetic ganglia. Cisplatin, an antineoplastic drug, is a Platinum-based compound and is known to inhibit the proliferation of neuroblastoma cells. Effective applications of nanoparticles in biomedical areas such as biomolecular, antimicrobial detection and diagnosis, tissue engineering, theranostics, biomarking, drug delivery, and anti-cancer have been investigated in many studies. This study aims to prepare the bioconjugates of CoS (cobalt sulfide) nanoparticles (NPs) with cisplatin combination groups and to evaluate their effects on the neuroblastoma cell line. Nanoparticle synthesis was done using the green synthesis technique using Punica granatum plant extract. The size and shape of CoS NPs were characterized by SEM, FT-IR, and XRD. Zeta potential was confirmed by the DLS study. For this purpose, the SH-SY5Y neuroblastoma cell line was cultured in a suitable cell culture medium. Cisplatin 5 µg and different concentrations (Cisplatin + CoS NPs bioconjugates (5, 10, 25, 50, 75 µg) doses were applied to SH-SY5Y neuroblastoma cell lines for 24 h. TAC, TOS and MTT tests were performed 24 h after the application. According to the MTT test results, cisplatin and CoS NP combinations reduced the proliferation of neuroblastoma cells by 78 to 57% compared to the cisplatin control. From the findings obtained; the most effective Bio-conjugate group was Cisplatin 5 µg/mL + CoS 75 µg/mL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA