Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Genet ; 56(4): 585-594, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553553

RESUMEN

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.


Asunto(s)
Parálisis Cerebral , Variaciones en el Número de Copia de ADN , Humanos , Niño , Variaciones en el Número de Copia de ADN/genética , Parálisis Cerebral/genética , Mutación , Secuenciación Completa del Genoma , Genómica
2.
EBioMedicine ; 101: 105027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418263

RESUMEN

BACKGROUND: Cardiomyopathy is a clinically and genetically heterogeneous heart condition that can lead to heart failure and sudden cardiac death in childhood. While it has a strong genetic basis, the genetic aetiology for over 50% of cardiomyopathy cases remains unknown. METHODS: In this study, we analyse the characteristics of tandem repeats from genome sequence data of unrelated individuals diagnosed with cardiomyopathy from Canada and the United Kingdom (n = 1216) and compare them to those found in the general population. We perform burden analysis to identify genomic and epigenomic features that are impacted by rare tandem repeat expansions (TREs), and enrichment analysis to identify functional pathways that are involved in the TRE-associated genes in cardiomyopathy. We use Oxford Nanopore targeted long-read sequencing to validate repeat size and methylation status of one of the most recurrent TREs. We also compare the TRE-associated genes to those that are dysregulated in the heart tissues of individuals with cardiomyopathy. FINDINGS: We demonstrate that tandem repeats that are rarely expanded in the general population are predominantly expanded in cardiomyopathy. We find that rare TREs are disproportionately present in constrained genes near transcriptional start sites, have high GC content, and frequently overlap active enhancer H3K27ac marks, where expansion-related DNA methylation may reduce gene expression. We demonstrate the gene silencing effect of expanded CGG tandem repeats in DIP2B through promoter hypermethylation. We show that the enhancer-associated loci are found in genes that are highly expressed in human cardiomyocytes and are differentially expressed in the left ventricle of the heart in individuals with cardiomyopathy. INTERPRETATION: Our findings highlight the underrecognized contribution of rare tandem repeat expansions to the risk of cardiomyopathy and suggest that rare TREs contribute to ∼4% of cardiomyopathy risk. FUNDING: Government of Ontario (RKCY), The Canadian Institutes of Health Research PJT 175329 (RKCY), The Azrieli Foundation (RKCY), SickKids Catalyst Scholar in Genetics (RKCY), The University of Toronto McLaughlin Centre (RKCY, SM), Ted Rogers Centre for Heart Research (SM), Data Sciences Institute at the University of Toronto (SM), The Canadian Institutes of Health Research PJT 175034 (SM), The Canadian Institutes of Health Research ENP 161429 under the frame of ERA PerMed (SM, RL), Heart and Stroke Foundation of Ontario & Robert M Freedom Chair in Cardiovascular Science (SM), Bitove Family Professorship of Adult Congenital Heart Disease (EO), Canada Foundation for Innovation (SWS, JR), Canada Research Chair (PS), Genome Canada (PS, JR), The Canadian Institutes of Health Research (PS).


Asunto(s)
Cardiomiopatías , Cardiopatías Congénitas , Humanos , Adulto , Cardiopatías Congénitas/genética , Secuencias Repetidas en Tándem/genética , Metilación de ADN , Cardiomiopatías/genética , Ontario , Proteínas del Tejido Nervioso/genética
3.
Eur J Hum Genet ; 32(2): 238-242, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38012313

RESUMEN

A recent report described a nonsense variant simultaneously creating a donor splice site, resulting in a truncated but functional protein. To explore the generalizability of this unique mechanism, we annotated >115,000 nonsense variants using SpliceAI. Between 0.61% (donor gain delta score >0.8, for high precision) and 2.57% (>0.2, for high sensitivity) of nonsense variants were predicted to create new donor splice sites at or upstream of the stop codon. These variants were less likely than other nonsense variants in the same genes to be classified as pathogenic/likely pathogenic in ClinVar (p < 0.001). Up to 1 in 175 nonsense variants were predicted to result in small in-frame deletions and loss-of-function evasion through this "manufactured splice rescue" mechanism. We urge caution when interpreting nonsense variants where manufactured splice rescue is a strong possibility and correlation with phenotype is challenging, as will often be the case with secondary findings and newborn genomic screening programs.


Asunto(s)
Codón sin Sentido , Genómica , Recién Nacido , Humanos , Codón de Terminación , Fenotipo , Sitios de Empalme de ARN/genética
4.
Pathogens ; 12(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37764923

RESUMEN

Herpesvirus infections of sturgeon pose a potential threat to sturgeon culture efforts worldwide. A new epitheliotropic herpesvirus named Acipenser herpesvirus 3 (AciHV-3) was detected in hatchery-reared Lake Sturgeon Acipenser fulvescens displaying skin lesions in central Canada. The growths were discovered in the fall, reached average prevalence levels of 0.2-40% and eventually regressed. No unusual mortality was observed. The cellular changes within the lesions included epithelial hyperplasia and were reminiscent of other herpesvirus infections. The virus was not evident in lesions examined by electron microscopy. Skin tissue homogenates from symptomatic sturgeon produced atypical cytopathic effects on a primary Lake Sturgeon cell line, and next-generation sequence analysis of the DNA samples revealed the presence of an alloherpesvirus. A new genotyping PCR assay targeting the major capsid protein sequence detected AciHV-3 in symptomatic Lake Sturgeon as well as other apparently healthy sturgeon species. Bayesian inference of phylogeny reconstructed with a concatenation of five alloherpesvirus core proteins revealed a new Alloherpesviridae lineage isomorphic with a new genus. The presence of AciHV-3 homologs in cell lines and sturgeon sequence datasets, low sequence divergence among these homologs and branching patterns within the genotyping phylogeny provide preliminary evidence of an endogenous virus lifestyle established in an ancestral sturgeon.

5.
Hum Mol Genet ; 32(15): 2411-2421, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37154571

RESUMEN

We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Adolescente , Humanos , Niño , Salud Mental , Variaciones en el Número de Copia de ADN/genética , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Dosificación de Gen
6.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36368308

RESUMEN

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Variaciones en el Número de Copia de ADN/genética , Genómica
7.
Nat Commun ; 13(1): 6463, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309498

RESUMEN

Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.


Asunto(s)
Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/genética , Canadá/epidemiología , Genoma , Herencia Multifactorial/genética , Secuenciación Completa del Genoma , Predisposición Genética a la Enfermedad
8.
Circ Genom Precis Med ; 14(4): e003410, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34328347

RESUMEN

BACKGROUND: Tetralogy of Fallot (TOF)-the most common cyanotic heart defect in newborns-has evidence of multiple genetic contributing factors. Identifying variants that are clinically relevant is essential to understand patient-specific disease susceptibility and outcomes and could contribute to delineating pathomechanisms. METHODS: Using a clinically driven strategy, we reanalyzed exome sequencing data from 811 probands with TOF, to identify rare loss-of-function and other likely pathogenic variants in genes associated with congenital heart disease. RESULTS: We confirmed a major contribution of likely pathogenic variants in FLT4 (VEGFR3 [vascular endothelial growth factor receptor 3]; n=14) and NOTCH1 (n=10) and identified 1 to 3 variants in each of 21 other genes, including ATRX, DLL4, EP300, GATA6, JAG1, NF1, PIK3CA, RAF1, RASA1, SMAD2, and TBX1. In addition, multiple loss-of-function variants provided support for 3 emerging congenital heart disease/TOF candidate genes: KDR (n=4), IQGAP1 (n=3), and GDF1 (n=8). In total, these variants were identified in 63 probands (7.8%). Using the 26 composite genes in a STRING protein interaction enrichment analysis revealed a biologically relevant network (P=3.3×10-16), with VEGFR2 (vascular endothelial growth factor receptor 2; KDR) and NOTCH1 (neurogenic locus notch homolog protein 1) representing central nodes. Variants associated with arrhythmias/sudden death and heart failure indicated factors that could influence long-term outcomes. CONCLUSIONS: The results are relevant to precision medicine for TOF. They suggest considerable clinical yield from genome-wide sequencing, with further evidence for KDR (VEGFR2) as a congenital heart disease/TOF gene and for VEGF (vascular endothelial growth factor) and Notch signaling as mechanisms in human disease. Harnessing the genetic heterogeneity of single gene defects could inform etiopathogenesis and help prioritize novel candidate genes for TOF.


Asunto(s)
Predisposición Genética a la Enfermedad , Mapas de Interacción de Proteínas , Tetralogía de Fallot/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Recién Nacido , Masculino , Secuenciación del Exoma
9.
Mol Immunol ; 133: 101-109, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33640760

RESUMEN

With an objective to understand acquisition of innate immunity in bovine neonates, we analyzed perinatal expression of cytokine, adhesion molecule and complement component genes involved in innate and adaptive immune functions. Statistically robust transcriptomic analysis of 27 cytokines showed low IL1B, IL2 and IL7 but high IL23, TGFB1 and TGFB2 expression in bovine neonates post-birth. Unlike mice and humans, no TH2 polarizing cytokine expression occurs in bovine neonates. Further, TH17 and Treg differentiation in bovine neonates may differ from other species like mice and humans. Decreased IL7, IL23R, CXCR3 and increased TGFB1 and TGFB2 expression provides an immunosuppressive environment in the bovine neonate at birth. Transcriptomic analysis of 31 adhesion molecules showed rapid increase in ITGAL expression within a week post-birth in bovine neonates that permits acquisition of innate cytotoxic functions by granulocytes (antibody-mediated), cytotoxic T and NK cells. However, innate immune functions involving phagocytosis and platelet aggregation are deficient in bovine neonates at birth. Of twenty-seven, 18 complement component genes show no significant differential gene expression in neonates post-birth. But low expression of C1QA, C1QB, CQC, C1R and C2 compromises classical and lectin complement pathways mediated lytic function in bovine neonates. The complement-mediated cytotoxic functions, however, normalize between days 7 and 28 post-birth. To conclude, bovine neonate is immunosuppressed and deficient in innate immune competence at birth. Such differences with regard to global innate immune deficiency and lack of TH2 polarization in bovine neonates have profound implications for designing vaccines to prevent neonatal infections. To conclude, species-specific unique characteristics of developing innate and adaptive immune system need to be taken into consideration while designing new immunization strategies to prevent neonatal mortality from infections.


Asunto(s)
Animales Recién Nacidos/inmunología , Citocinas/biosíntesis , Inmunidad Innata/genética , Linfocitos T Reguladores/citología , Células Th17/citología , Células Th2/citología , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Animales , Bovinos , Proteínas del Sistema Complemento/biosíntesis , Proteínas del Sistema Complemento/genética , Citocinas/genética , Femenino , Perfilación de la Expresión Génica , Inmunidad Innata/inmunología , Fagocitosis/inmunología , Agregación Plaquetaria/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Células Th2/inmunología
10.
Front Genet ; 11: 957, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110418

RESUMEN

Recent genome-wide studies of rare genetic variants have begun to implicate novel mechanisms for tetralogy of Fallot (TOF), a severe congenital heart defect (CHD). To provide statistical support for case-only data without parental genomes, we re-analyzed genome sequences of 231 individuals with TOF (n = 175) or related CHD. We adapted a burden test originally developed for de novo variants to assess ultra-rare variant burden in individual genes, and in gene-sets corresponding to functional pathways and mouse phenotypes, accounting for highly correlated gene-sets and for multiple testing. For truncating variants, the gene burden test confirmed significant burden in FLT4 (Bonferroni corrected p-value < 0.01). For missense variants, burden in NOTCH1 achieved genome-wide significance only when restricted to constrained genes (i.e., under negative selection, Bonferroni corrected p-value = 0.004), and showed enrichment for variants affecting the extracellular domain, especially those disrupting cysteine residues forming disulfide bonds (OR = 39.8 vs. gnomAD). Individuals with NOTCH1 ultra-rare missense variants, all with TOF, were enriched for positive family history of CHD. Other genes not previously implicated in CHD had more modest statistical support in gene burden tests. Gene-set burden tests for truncating variants identified a cluster of pathways corresponding to VEGF signaling (FDR = 0%), and of mouse phenotypes corresponding to abnormal vasculature (FDR = 0.8%); these suggested additional candidate genes not previously identified (e.g., WNT5A and ZFAND5). Results for the most promising genes were driven by the TOF subset of the cohort. The findings support the importance of ultra-rare variants disrupting genes involved in VEGF and NOTCH signaling in the genetic architecture of TOF, accounting for 11-14% of individuals in the TOF cohort. These proof-of-principle data indicate that this statistical methodology could assist in analyzing case-only sequencing data in which ultra-rare variants, whether de novo or inherited, contribute to the genetic etiopathogenesis of a complex disorder.

11.
G3 (Bethesda) ; 9(2): 463-471, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30622122

RESUMEN

Post-traumatic stress disorder is a concerning psychobehavioral disorder thought to emerge from the complex interaction between genetic and environmental factors. For soldiers exposed to combat, the risk of developing this disorder is twofold and diagnosis is often late, when much sequela has set in. To be able to identify and diagnose in advance those at "risk" of developing post-traumatic stress disorder, would greatly taper the gap between late sequelae and treatment. Therefore, this study sought to determine whether the transcriptome can be used to track the development of post-traumatic stress disorder in this unique and susceptible cohort of individuals. Gene expression levels in peripheral blood samples from 85 Canadian infantry soldiers (n = 58 participants negative for symptoms of post-traumatic stress disorder and n = 27 participants with symptoms of post-traumatic stress disorder) following return from deployment to Afghanistan were determined using RNA sequencing technology. Count-based gene expression quantification, normalization and differential analysis (with thorough correction for confounders) revealed genes associated to PTSD; LRP8 and GOLM1 These preliminary results provide a proof-of-principle for the diagnostic utility of blood-based gene expression profiles for tracking symptoms of post-traumatic stress disorder in soldiers returning from tour. It is also the first to report transcriptome-wide expression profiles alongside a post-traumatic symptom checklist.


Asunto(s)
Personal Militar , Trastornos por Estrés Postraumático/genética , Transcriptoma , Adulto , Biomarcadores/sangre , Perfilación de la Expresión Génica/métodos , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , ARN Mensajero/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Trastornos por Estrés Postraumático/sangre
12.
Am J Hum Genet ; 102(2): 278-295, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395074

RESUMEN

Copy-number variations (CNVs) are strong risk factors for neurodevelopmental and psychiatric disorders. The 15q13.3 microdeletion syndrome region contains up to ten genes and is associated with numerous conditions, including autism spectrum disorder (ASD), epilepsy, schizophrenia, and intellectual disability; however, the mechanisms underlying the pathogenesis of 15q13.3 microdeletion syndrome remain unknown. We combined whole-genome sequencing, human brain gene expression (proteome and transcriptome), and a mouse model with a syntenic heterozygous deletion (Df(h15q13)/+ mice) and determined that the microdeletion results in abnormal development of cortical dendritic spines and dendrite outgrowth. Analysis of large-scale genomic, transcriptomic, and proteomic data identified OTUD7A as a critical gene for brain function. OTUD7A was found to localize to dendritic and spine compartments in cortical neurons, and its reduced levels in Df(h15q13)/+ cortical neurons contributed to the dendritic spine and dendrite outgrowth deficits. Our results reveal OTUD7A as a major regulatory gene for 15q13.3 microdeletion syndrome phenotypes that contribute to the disease mechanism through abnormal cortical neuron morphological development.


Asunto(s)
Trastornos de los Cromosomas/enzimología , Trastornos de los Cromosomas/genética , Enzimas Desubicuitinizantes/fisiología , Endopeptidasas/genética , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Convulsiones/enzimología , Convulsiones/genética , Animales , Trastorno del Espectro Autista/genética , Deleción Cromosómica , Cromosomas Humanos Par 15/enzimología , Cromosomas Humanos Par 15/genética , Espinas Dendríticas/metabolismo , Enzimas Desubicuitinizantes/genética , Endopeptidasas/metabolismo , Femenino , Eliminación de Gen , Estudios de Asociación Genética , Humanos , Masculino , Ratones , Fenotipo , Prosencéfalo/patología
13.
CMAJ ; 190(5): E126-E136, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29431110

RESUMEN

BACKGROUND: The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. METHODS: Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. RESULTS: Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set (n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. INTERPRETATION: Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care.


Asunto(s)
Variación Genética/genética , Genoma Humano/genética , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos , Canadá , Femenino , Genes Recesivos/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino
14.
Genet Med ; 20(4): 435-443, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28771251

RESUMEN

PurposeGenetic testing is an integral diagnostic component of pediatric medicine. Standard of care is often a time-consuming stepwise approach involving chromosomal microarray analysis and targeted gene sequencing panels, which can be costly and inconclusive. Whole-genome sequencing (WGS) provides a comprehensive testing platform that has the potential to streamline genetic assessments, but there are limited comparative data to guide its clinical use.MethodsWe prospectively recruited 103 patients from pediatric non-genetic subspecialty clinics, each with a clinical phenotype suggestive of an underlying genetic disorder, and compared the diagnostic yield and coverage of WGS with those of conventional genetic testing.ResultsWGS identified diagnostic variants in 41% of individuals, representing a significant increase over conventional testing results (24%; P = 0.01). Genes clinically sequenced in the cohort (n = 1,226) were well covered by WGS, with a median exonic coverage of 40 × ±8 × (mean ±SD). All the molecular diagnoses made by conventional methods were captured by WGS. The 18 new diagnoses made with WGS included structural and non-exonic sequence variants not detectable with whole-exome sequencing, and confirmed recent disease associations with the genes PIGG, RNU4ATAC, TRIO, and UNC13A.ConclusionWGS as a primary clinical test provided a higher diagnostic yield than conventional genetic testing in a clinically heterogeneous cohort.


Asunto(s)
Estudios de Asociación Genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Exoma , Femenino , Estudios de Asociación Genética/métodos , Estudios de Asociación Genética/normas , Pruebas Genéticas/métodos , Pruebas Genéticas/normas , Variación Genética , Humanos , Masculino , Anotación de Secuencia Molecular , Fenotipo , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Secuenciación del Exoma/métodos , Secuenciación del Exoma/normas , Secuenciación Completa del Genoma/métodos , Secuenciación Completa del Genoma/normas
15.
Nat Neurosci ; 20(4): 602-611, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28263302

RESUMEN

We are performing whole-genome sequencing of families with autism spectrum disorder (ASD) to build a resource (MSSNG) for subcategorizing the phenotypes and underlying genetic factors involved. Here we report sequencing of 5,205 samples from families with ASD, accompanied by clinical information, creating a database accessible on a cloud platform and through a controlled-access internet portal. We found an average of 73.8 de novo single nucleotide variants and 12.6 de novo insertions and deletions or copy number variations per ASD subject. We identified 18 new candidate ASD-risk genes and found that participants bearing mutations in susceptibility genes had significantly lower adaptive ability (P = 6 × 10-4). In 294 of 2,620 (11.2%) of ASD cases, a molecular basis could be determined and 7.2% of these carried copy number variations and/or chromosomal abnormalities, emphasizing the importance of detecting all forms of genetic variation as diagnostic and therapeutic targets in ASD.


Asunto(s)
Trastorno del Espectro Autista/genética , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Humanos , Mutagénesis Insercional/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Eliminación de Secuencia/genética
16.
NPJ Genom Med ; 1: 160271-1602710, 2016 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27525107

RESUMEN

De novo mutations (DNMs) are important in Autism Spectrum Disorder (ASD), but so far analyses have mainly been on the ~1.5% of the genome encoding genes. Here, we performed whole genome sequencing (WGS) of 200 ASD parent-child trios and characterized germline and somatic DNMs. We confirmed that the majority of germline DNMs (75.6%) originated from the father, and these increased significantly with paternal age only (p=4.2×10-10). However, when clustered DNMs (those within 20kb) were found in ASD, not only did they mostly originate from the mother (p=7.7×10-13), but they could also be found adjacent to de novo copy number variations (CNVs) where the mutation rate was significantly elevated (p=2.4×10-24). By comparing DNMs detected in controls, we found a significant enrichment of predicted damaging DNMs in ASD cases (p=8.0×10-9; OR=1.84), of which 15.6% (p=4.3×10-3) and 22.5% (p=7.0×10-5) were in the non-coding or genic non-coding, respectively. The non-coding elements most enriched for DNM were untranslated regions of genes, boundaries involved in exon-skipping and DNase I hypersensitive regions. Using microarrays and a novel outlier detection test, we also found aberrant methylation profiles in 2/185 (1.1%) of ASD cases. These same individuals carried independently identified DNMs in the ASD risk- and epigenetic- genes DNMT3A and ADNP. Our data begins to characterize different genome-wide DNMs, and highlight the contribution of non-coding variants, to the etiology of ASD.

17.
Sci Rep ; 6: 28663, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27363808

RESUMEN

A challenge in clinical genomics is to predict whether copy number variation (CNV) affecting a gene or multiple genes will manifest as disease. Increasing recognition of gene dosage effects in neurodevelopmental disorders prompted us to develop a computational approach based on critical-exon (highly expressed in brain, highly conserved) examination for potential etiologic effects. Using a large CNV dataset, our updated analyses revealed significant (P < 1.64 × 10(-15)) enrichment of critical-exons within rare CNVs in cases compared to controls. Separately, we used a weighted gene co-expression network analysis (WGCNA) to construct an unbiased protein module from prenatal and adult tissues and found it significantly enriched for critical exons in prenatal (P < 1.15 × 10(-50), OR = 2.11) and adult (P < 6.03 × 10(-18), OR = 1.55) tissues. WGCNA yielded 1,206 proteins for which we prioritized the corresponding genes as likely to have a role in neurodevelopmental disorders. We compared the gene lists obtained from critical-exon and WGCNA analysis and found 438 candidate genes associated with CNVs annotated as pathogenic, or as variants of uncertain significance (VOUS), from among 10,619 developmental delay cases. We identified genes containing CNVs previously considered to be VOUS to be new candidate genes for neurodevelopmental disorders (GIT1, MVB12B and PPP1R9A) demonstrating the utility of this strategy to index the clinical effects of CNVs.


Asunto(s)
Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Niño , Discapacidades del Desarrollo/metabolismo , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Proteómica/métodos
18.
Int J Mol Sci ; 17(3): 396, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26999121

RESUMEN

Successful fertilization and subsequent embryo development rely on complex molecular processes starting with the development of oocyte competence through maturation. MicroRNAs (miRNAs) are small non-coding RNA molecules that function as gene regulators in many biological systems, including the oocyte and embryo. In order to further explore the roles of miRNAs in oocyte maturation, we employed small RNA sequencing as a screening tool to identify and characterize miRNA populations present in pools of bovine germinal vesicle (GV) oocytes, metaphase II (MII) oocytes, and presumptive zygotes (PZ). Each stage contained a defined miRNA population, some of which showed stable expression while others showed progressive changes between stages that were subsequently confirmed by quantitative reverse transcription polymerase chain reaction (RT-PCR). Bta-miR-155, bta-miR-222, bta-miR-21, bta-let-7d, bta-let-7i, and bta-miR-190a were among the statistically significant differentially expressed miRNAs (p < 0.05). To determine whether changes in specific primary miRNA (pri-miRNA) transcripts were responsible for the observed miRNA changes, we evaluated pri-miR-155, -222 and let-7d expression. Pri-miR-155 and -222 were not detected in GV oocytes but pri-miR-155 was present in MII oocytes, indicating transcription during maturation. In contrast, levels of pri-let-7d decreased during maturation, suggesting that the observed increase in let-7d expression was likely due to processing of the primary transcript. This study demonstrates that both dynamic and stable populations of miRNAs are present in bovine oocytes and zygotes and extend previous studies supporting the importance of the small RNA landscape in the maturing bovine oocyte and early embryo.


Asunto(s)
Fertilización , MicroARNs/genética , Oocitos/metabolismo , Oogénesis , Animales , Bovinos , Femenino , Regulación del Desarrollo de la Expresión Génica , Oocitos/citología
19.
Pediatr Transplant ; 20(1): 124-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26578436

RESUMEN

This study examines EBV strains from transplant patients and patients with IM by sequencing major EBV genes. We also used NGS to detect EBV DNA within total genomic DNA, and to evaluate its genetic variation. Sanger sequencing of major EBV genes was used to compare SNVs from samples taken from transplant patients vs. patients with IM. We sequenced EBV DNA from a healthy EBV-seropositive individual on a HiSeq 2000 instrument. Data were mapped to the EBV reference genomes (AG876 and B95-8). The number of EBNA2 SNVs was higher than for EBNA1 and the other genes sequenced within comparable reference coordinates. For EBNA2, there was a median of 15 SNV among transplant samples compared with 10 among IM samples (p = 0.036). EBNA1 showed little variation between samples. For NGS, we identified 640 and 892 variants at an unadjusted p value of 5 × 10(-8) for AG876 and B95-8 genomes, respectively. We used complementary sequence strategies to examine EBV genetic diversity and its application to transplantation. The results provide the framework for further characterization of EBV strains and related outcomes after organ transplantation.


Asunto(s)
Herpesvirus Humano 4/genética , Mononucleosis Infecciosa/virología , Adolescente , Niño , Preescolar , Estudios de Cohortes , ADN Viral/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Estudios de Factibilidad , Genoma Viral , Humanos , Lactante , Trasplante de Órganos/efectos adversos , Valores de Referencia , Análisis de Secuencia de ADN , Resultado del Tratamiento , Carga Viral , Proteínas Virales/genética , Adulto Joven
20.
NPJ Genom Med ; 12016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28567303

RESUMEN

The standard of care for first-tier clinical investigation of the etiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion-deletions (indels) and single nucleotide variant (SNV) mutations. Whole genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilized WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a 4-fold increase in diagnostic rate over CMA (8%) (p-value = 1.42e-05) alone and >2-fold increase in CMA plus targeted gene sequencing (13%) (p-value = 0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harboring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counseling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...