Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Front Plant Sci ; 14: 1136445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37351216

RESUMEN

Ultradian rhythms have been proved to be critical for diverse biological processes. However, comprehensive understanding of the short-period rhythms remains limited. Here, we discover that leaf excision triggers a gene expression rhythm with ~3-h periodicity, named as the excision ultradian rhythm (UR), which is regulated by the plant hormone auxin. Promoter-luciferase analyses showed that the spatiotemporal patterns of the excision UR were positively associated with de novo root regeneration (DNRR), a post-embryonic developmental process. Transcriptomic analysis indicated more than 4,000 genes including DNRR-associated genes were reprogramed toward ultradian oscillation. Genetic studies showed that EXCISION ULTRADIAN RHYTHM 1 (EUR1) encoding ENHANCER OF ABSCISIC ACID CO-RECEPTOR1 (EAR1), an abscisic acid signaling regulator, was required to generate the excision ultradian rhythm and enhance root regeneration. The eur1 mutant exhibited the absence of auxin-induced excision UR generation and partial failure during rescuing root regeneration. Our results demonstrate a link between the excision UR and adventitious root formation via EAR1/EUR1, implying an additional regulatory layer in plant regeneration.

2.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37047538

RESUMEN

Nicotianamine (NA) is produced by NA synthase (NAS), which contains three genes in rice and is responsible for chelating metals such as iron (Fe) and zinc (Zn), as well as preserving metal homeostasis. In this study, we generated a transgenic plant (23D) that shows simultaneous activation of OsNAS2 and OsNAS3 by crossing two previously identified activation-tagged mutants, OsNAS2-D1 (2D) and OsNAS3-D1 (3D). Concomitant activation of both genes resulted in the highest Fe and Zn concentrations in shoots and roots of the 23D plants grown under normal conditions and Fe and Zn limited growth conditions. Expression of genes for the biosynthesis of mugineic acid family phytosiderophores (MAs) and Fe and Zn uptake were enhanced in 23D roots. Additionally, 23D plants displayed superior growth to other plants at higher pH levels. Importantly, 23D seeds had NA and 2'-deoxymugineic acid (DMA) concentrations that were 50.6- and 10.0-fold higher than those of the WT. As a result, the mature grain Fe and Zn concentrations of the 23D plant were 4.0 and 3.5 times greater, respectively, than those of the WT. Furthermore, 23D plants exhibited the greatest resistance to excess metals. Our research suggests that simultaneous activation of OsNAS2 and OsNAS3 can enhance Fe and Zn accumulation in rice grains while also increasing plant tolerance to growing situations with metal deficiency and excess metal availability.


Asunto(s)
Hierro , Oryza , Hierro/metabolismo , Zinc/metabolismo , Oryza/metabolismo , Semillas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plants (Basel) ; 10(7)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34371678

RESUMEN

In unicellular photosynthetic organisms, circadian rhythm is tightly linked to gating of cell cycle progression, and is entrained by light signal. As several organisms obtain a fitness advantage when the external light/dark cycle matches their endogenous period, and aging alters circadian rhythms, senescence phenotypes of the microalga Euglena gracilis of different culture ages were characterized with respect to the cell division cycle. We report here the effects of prolonged-stationary-phase conditions on the cell division cycles of E. gracilis under non-24-h light/dark cycles (T-cycles). Under T-cycles, cells established from 1-month-old and 2-month-old cultures produced lower cell concentrations after cultivation in the fresh medium than cells from 1-week-old culture. This decrease was not due to higher concentrations of dead cells in the populations, suggesting that cells of different culture ages differ in their capacity for cell division. Cells from 1-week-old cultures had a shorter circadian period of their cell division cycle under shortened T-cycles than aged cells. When algae were transferred to free-running conditions after entrainment to shortened T-cycles, the young cells showed the peak growth rate at a time corresponding to the first subjective night, but the aged cells did not. This suggests that circadian rhythms are more plastic in younger E. gracilis cells.

4.
Mol Plant ; 14(11): 1901-1917, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34303024

RESUMEN

Leaf senescence, the final stage of leaf development, is influenced by numerous internal and environmental signals. However, how biotic stresses such as pathogen infection regulate leaf senescence remains largely unclear. In this study, we found that the premature leaf senescence in Arabidopsis caused by the soil-borne vascular fungus Verticillium dahliae was impaired by disruption of a protein elicitor from V. dahliae 1 named PevD1. Constitutive or inducible overexpression of PevD1 accelerated Arabidopsis leaf senescence. Interestingly, a senescence-associated NAC transcription factor, ORE1, was targeted by PevD1. PevD1 could interact with and stabilize ORE1 protein by disrupting its interaction with the RING-type ubiquitin E3 ligase NLA. Mutation of ORE1 suppressed the premature senescence caused by overexpressing PevD1, whereas overexpression of ORE1 or PevD1 led to enhanced ethylene production and thereby leaf senescence. We showed that ORE1 directly binds the promoter of ACS6 and promotes its expression for mediating PevD1-induced ethylene biosynthesis. Loss-of-function of ACSs could suppress V. dahliae-induced leaf senescence in ORE1-overexpressing plants. Furthermore, we found thatPevD1 also interacts with Gossypium hirsutum ORE1 (GhORE1) and that virus-induced gene silencing of GhORE1 delays V. dahliae-triggered leaf senescence in cotton, indicating a possibly conserved mechanism in plants. Taken together, these results suggest that V. dahliae induces leaf senescence by secreting the effector PevD1 to manipulate the ORE1-ACS6 cascade, providing new insights into biotic stress-induced senescence in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Ascomicetos/patogenicidad , Etilenos/biosíntesis , Proteínas Fúngicas/inmunología , Enfermedades de las Plantas/microbiología , Senescencia de la Planta , Factores de Transcripción/metabolismo , Arabidopsis/microbiología , Ascomicetos/inmunología , Proteínas Fúngicas/metabolismo , Hojas de la Planta
5.
Sci Rep ; 11(1): 12304, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112855

RESUMEN

Small RNAs that originate from transfer RNA (tRNA) species, tRNA-derived fragments (tRFs), play diverse biological functions but little is known for their association with aging. Moreover, biochemical aspects of tRNAs limit discovery of functional tRFs by high throughput sequencing. In particular, genes encoding tRNAs exist as multiple copies throughout genome, and mature tRNAs have various modified bases, contributing to ambiguities for RNA sequencing-based analysis of tRFs. Here, we report age-dependent changes of tRFs in Caenorhabditis elegans. We first analyzed published RNA sequencing data by using a new strategy for tRNA-associated sequencing reads. Our current method used unique mature tRNAs as a reference for the sequence alignment, and properly filtered out false positive enrichment for tRFs. Our analysis successfully distinguished de novo mutation sites from differences among homologous copies, and identified potential RNA modification sites. Overall, the majority of tRFs were upregulated during aging and originated from 5'-ends, which we validated by using Northern blot analysis. Importantly, we revealed that the major source of tRFs upregulated during aging was the tRNAs with abundant gene copy numbers. Our analysis suggests that tRFs are useful biomarkers of aging particularly when they originate from abundant homologous gene copies.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/genética , ARN de Transferencia/genética , Homología de Secuencia , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Alineación de Secuencia , Análisis de Secuencia de ARN
6.
iScience ; 24(1): 101905, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33385110

RESUMEN

Circadian rhythm is altered during aging, although the underlying molecular mechanisms remain largely unknown. Here, we used the turquoise killifish as a short-lived vertebrate model to examine the effects of aging on the major circadian network comprising the four mammalian clock protein homologs, Bmal1, Clockb, Cry1b, and Per3, which are highly conserved in the killifish with 50%-85% amino acid sequence identity to their human counterparts. The amplitude of circadian rhythm was smaller in old fish (14 weeks) than in young fish (6 weeks). In old fish brain, the Bmal1 protein level was significantly downregulated. However, the Bmal1 interaction with Clockb and chromatin binding of Bmal1 to its downstream target promoters were retained. Furthermore, Bmal1 was relatively well maintained in the pineal gland compared with other regions of the old fish brain. The results suggest that the circadian clock system in the killifish becomes spatially confined to the pineal gland upon aging.

7.
Front Plant Sci ; 11: 589707, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329652

RESUMEN

Plants undergo several important developmental transitions including flowering and senescence during their life cycle. Timing these transitions according to the environmental conditions increases plant fitness and productivity. The circadian clock senses various environmental cycles, including photoperiod, and synchronizes plant physiological processes to maximize plant fitness. Here, we propose that the cellular localization of GIGANTEA (GI), a key clock component, regulates leaf senescence and flowering in Arabidopsis thaliana. We show that GI, which connects the circadian clock with photoperiod-regulated flowering, induces leaf senescence depending on its subcellular localization. Overexpression of GI in the gi mutant rescued its delayed senescence phenotype but only when the GI protein was targeted to the nucleus, not when it was targeted to the cytosol. In the nucleus, EARLY FLOWERING 4 (ELF4) inhibited the binding of GI to ORESARA 1 (ORE1) promoter to regulate leaf senescence. GI also positively regulated the day-peak of ORE1 expression. These results indicate that like flowering, leaf senescence is also controlled by the location of GI in the cell. Taken together, our results suggest that ELF4 and GI act together to control flowering and senescence in Arabidopsis.

8.
Sci Adv ; 6(41)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33028513

RESUMEN

Cells contain more than 100 mM salt ions that are typically confined to dimensions of 5 to 10 micrometers by a hydrophobic cellular membrane. We found that in aqueous microdroplets having the same size as cells and that are confined in hydrocarbon oil, negatively charged molecules were distributed rather uniformly over the interior of the microdroplet, whereas positively charged molecules were localized at and near the surface. However, the addition of salt (NaCl) to the microdroplet caused all charged molecules to be localized near the oil-water interface. This salt-induced relocalization required less salt concentration in microdroplets compared to bulk water. Moreover, the localization became more prominent as the size of the microdroplet was reduced. The relocatization also critically depended on the type of oil. Our results imply that salt ions and different hydrophobic interfaces together may govern the local distribution of charged biomolecules in confined intracellular environments.

9.
Sci Rep ; 10(1): 16859, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033365

RESUMEN

Fluorescent molecular rotor dyes, including Cy3, Cy5, and Alexa Fluor 555, dissolved in micron-sized aqueous droplets (microdroplets) in oil were excited, and the fluorescence intensity was recorded as function of time. We observed lengthening of the fluorescence lifetime of these dyes at the water-oil periphery, which extended several microns inward. This behavior shows that intramolecular rotation is restricted at and near the microdroplet interface. Lengthened lifetimes were observed in water microdroplets but not in microdroplets composed of organic solvents. This lifetime change was relatively insensitive to added glycerol up to 60%, suggesting that solution viscosity is not the dominant mechanism. These restricted intramolecular rotations at and near the microdroplet periphery are consistent with the reduced entropy observed in chemical reactions in microdroplets compared to the same reaction conditions in bulk solution and helps us further understand why microdroplet chemistry differs so markedly from bulk-phase chemistry.

10.
Sci Rep ; 10(1): 10267, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581255

RESUMEN

A predominant physiological change that occurs during leaf senescence is a decrease in photosynthetic efficiency. An optimal organization of photosynthesis complexes in plant leaves is critical for efficient photosynthesis. However, molecular mechanisms for regulating photosynthesis complexes during leaf senescence remain largely unknown. Here we tracked photosynthesis complexes alterations during leaf senescence in Arabidopsis thaliana. Grana stack is significantly thickened and photosynthesis complexes were disassembled in senescing leaves. Defects in STN7 and CP29 led to an altered chloroplast ultrastructure and a malformation of photosynthesis complex organization in stroma lamella. Both CP29 phosphorylation by STN7 and CP29 fragmentation are highly associated with the photosynthesis complex disassembly. In turn, CP29 functions as a molecular glue to facilitate protein complex formation leading phosphorylation cascade and to maintain photosynthetic efficiency during leaf senescence. These data suggest a novel molecular mechanism to modulate leaf senescence via CP29 phosphorylation and fragmentation, serving as an efficient strategy to control photosynthesis complexes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Cloroplastos/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribonucleoproteínas/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Microscopía Electrónica de Transmisión , Fosforilación , Proteínas del Complejo del Centro de Reacción Fotosintética/ultraestructura , Hojas de la Planta/metabolismo , Estabilidad Proteica
11.
Nat Commun ; 11(1): 2819, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32499482

RESUMEN

Increased grain yield will be critical to meet the growing demand for food, and could be achieved by delaying crop senescence. Here, via quantitative trait locus (QTL) mapping, we uncover the genetic basis underlying distinct life cycles and senescence patterns of two rice subspecies, indica and japonica. Promoter variations in the Stay-Green (OsSGR) gene encoding the chlorophyll-degrading Mg++-dechelatase were found to trigger higher and earlier induction of OsSGR in indica, which accelerated senescence of indica rice cultivars. The indica-type promoter is present in a progenitor subspecies O. nivara and thus was acquired early during the evolution of rapid cycling trait in rice subspecies. Japonica OsSGR alleles introgressed into indica-type cultivars in Korean rice fields lead to delayed senescence, with increased grain yield and enhanced photosynthetic competence. Taken together, these data establish that naturally occurring OsSGR promoter and related lifespan variations can be exploited in breeding programs to augment rice yield.


Asunto(s)
Genes de Plantas , Variación Genética , Oryza/crecimiento & desarrollo , Oryza/genética , Regiones Promotoras Genéticas/genética , Alelos , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Endogamia , Fenotipo , Polimorfismo Genético , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Plant J ; 103(1): 7-20, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32369636

RESUMEN

Nitrogen (N) is a major factor for plant development and productivity. However, the application of nitrogenous fertilizers generates environmental and economic problems. To cope with the increasing global food demand, the development of rice varieties with high nitrogen use efficiency (NUE) is indispensable for reducing environmental issues and achieving sustainable agriculture. Here, we report that the concomitant activation of the rice (Oryza sativa) Ammonium transporter 1;2 (OsAMT1;2) and Glutamate synthetase 1 (OsGOGAT1) genes leads to increased tolerance to nitrogen limitation and to better ammonium uptake and N remobilization at the whole plant level. We show that the double activation of OsAMT1;2 and OsGOGAT1 increases plant performance in agriculture, providing better N grain filling without yield penalty under paddy field conditions, as well as better grain yield and N content when plants are grown under N llimitations in field conditions. Combining OsAMT1;2 and OsGOGAT1 activation provides a good breeding strategy for improving plant growth, nitrogen use efficiency and grain productivity, especially under nitrogen limitation, through the enhancement of both nitrogen uptake and assimilation.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Glutamato Sintasa/metabolismo , Nitrógeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Activación Enzimática , Mutación , Nitrógeno/deficiencia , Oryza/enzimología , Oryza/crecimiento & desarrollo , Plantones/metabolismo
13.
Aging (Albany NY) ; 12(9): 8202-8220, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350153

RESUMEN

Physiological stresses, such as pathogen infection, are detected by "cellular Surveillance Activated Detoxification and Defenses" (cSADD) systems that trigger host defense responses. Aging is associated with physiological stress, including impaired mitochondrial function. Here, we investigated whether an endogenous cSADD pathway is activated during aging in C. elegans. We provide evidence that the transcription factor ZIP-2, a well-known immune response effector in C. elegans, is activated in response to age-associated mitochondrial dysfunction. ZIP-2 mitigates multiple aging phenotypes, including mitochondrial disintegration and reduced motility of the pharynx and intestine. Importantly, our data suggest that ZIP-2 is activated during aging independently of bacterial infection and of the transcription factors ATFS-1 and CEBP-2. Thus, ZIP-2 is a key component of an endogenous pathway that delays aging phenotypes in C. elegans. Our data suggest that aging coopted a compensatory strategy for regulation of aging process as a guarded process rather than a simple passive deterioration process.


Asunto(s)
Envejecimiento/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Interacciones Huésped-Patógeno/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transducción de Señal , Factores de Transcripción
14.
Plant Cell Physiol ; 61(7): 1309-1320, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32384162

RESUMEN

Nitrogen (N) is a major limiting factor affecting crop yield in unfertilized soil. Thus, cultivars with a high N use efficiency (NUE) and good grain protein content (GPC) are needed to fulfill the growing food demand and to reduce environmental burden. This is especially true for rice (Oryza sativa L.) that is cultivated with a high input of N fertilizer and is a primary staple food crop for more than half of the global population. Here, we report that rice asparagine synthetase 1 (OsASN1) is required for grain yield and grain protein contents under both N-sufficient (conventional paddy fields) and N-limiting conditions from analyses of knockout mutant plants. In addition, we show that overexpression (OX) of OsASN1 results in better nitrogen uptake and assimilation, and increased tolerance to N limitation at the seedling stage. Under field conditions, the OsASN1 OX rice plants produced grains with increased N and protein contents without yield reduction compared to wild-type (WT) rice. Under N-limited conditions, the OX plants displayed increased grain yield and protein content with enhanced photosynthetic activity compared to WT rice. Thus, OsASN1 can be an effective target gene for the development of rice cultivars with higher grain protein content, NUE, and grain yield under N-limiting conditions.


Asunto(s)
Aspartatoamoníaco Ligasa/metabolismo , Grano Comestible/metabolismo , Nitrógeno/deficiencia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Carácter Cuantitativo Heredable , Plantones/metabolismo
15.
New Phytol ; 227(2): 473-484, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32163596

RESUMEN

All living organisms are unavoidably exposed to various endogenous and environmental stresses that trigger potentially fatal DNA damage, including double-strand breaks (DSBs). Although a growing body of evidence indicates that DNA damage is one of the prime drivers of aging in animals, little is known regarding the importance of DNA damage and its repair on lifespan control in plants. We found that the level of DSBs increases but DNA repair efficiency decreases as Arabidopsis leaves age. Generation of DSBs by inducible expression of I-PpoI leads to premature senescence phenotypes. We examined the senescence phenotypes in the loss-of-function mutants for 13 key components of the DNA repair pathway and found that deficiency in ATAXIA TELANGIECTASIA MUTATED (ATM), the chief transducer of the DSB signal, results in premature senescence in Arabidopsis. ATM represses DSB-induced expression of senescence-associated genes, including the genes encoding the WRKY and NAC transcription factors, central components of the leaf senescence process, via modulation of histone lysine methylation. Our work highlights the significance of ATM in the control of leaf senescence and has significant implications for the conservation of aging mechanisms in animals and plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ataxia Telangiectasia , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN , Roturas del ADN de Doble Cadena , Reparación del ADN , Epigénesis Genética
16.
Proc Natl Acad Sci U S A ; 116(39): 19294-19298, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31451646

RESUMEN

We show H2O2 is spontaneously produced from pure water by atomizing bulk water into microdroplets (1 µm to 20 µm in diameter). Production of H2O2, as assayed by H2O2-sensitve fluorescence dye peroxyfluor-1, increased with decreasing microdroplet size. Cleavage of 4-carboxyphenylboronic acid and conversion of phenylboronic acid to phenols in microdroplets further confirmed the generation of H2O2 The generated H2O2 concentration was ∼30 µM (∼1 part per million) as determined by titration with potassium titanium oxalate. Changing the spray gas to O2 or bubbling O2 decreased the yield of H2O2 in microdroplets, indicating that pure water microdroplets directly generate H2O2 without help from O2 either in air surrounding the droplet or dissolved in water. We consider various possible mechanisms for H2O2 formation and report a number of different experiments exploring this issue. We suggest that hydroxyl radical (OH) recombination is the most likely source, in which OH is generated by loss of an electron from OH- at or near the surface of the water microdroplet. This catalyst-free and voltage-free H2O2 production method provides innovative opportunities for green production of hydrogen peroxide.

17.
J Am Chem Soc ; 141(27): 10585-10589, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31244167

RESUMEN

Bulk water serves as an inert solvent for many chemical and biological reactions. Here, we report a striking exception. We observe that in micrometer-sized water droplets (microdroplets), spontaneous reduction of several organic molecules occurs, pyruvate to lactate, lipoic acid to dihydrolipoic acid, fumarate to succinate, and oxaloacetate to malate. This reduction proceeds in microdroplets without any added electron donors or acceptors and without any applied voltage. In three of the four cases, the reduction efficiency is 90% or greater when the concentration of the dissolved organic species is less than 0.1 µM. None of these reactions occurs spontaneously in bulk water. One example demonstrating the possible broad application of reduction in water microdroplets to organic molecules is the reduction of acetophenone to form 1-phenylethanol. Taken together, these results show that microdroplets provide a new foundation for green chemistry by rendering water molecules to be highly electrochemically active without any added reducing agent or applied potential. In this manner, aqueous microdroplets might have provided a route for abiotic reduction reactions in the prebiotic era, thereby providing organic molecules with a reducing power before the advent of biotic reducing machineries.

18.
Aging Cell ; 18(5): e12982, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31215146

RESUMEN

Dietary restriction (DR) robustly delays the aging process in all animals tested so far. DR slows aging by negatively regulating the target of rapamycin (TOR) and S6 kinase (S6K) signaling pathway and thus inhibiting translation. Translation inhibition in C. elegans is known to activate the innate immune signal ZIP-2. Here, we show that ZIP-2 is activated in response to DR and in feeding-defective eat-2 mutants. Importantly, ZIP-2 contributes to the improvements in longevity and healthy aging, including mitochondrial integrity and physical ability, mediated by DR in C. elegans. We further show that ZIP-2 is activated upon inhibition of TOR/S6K signaling. However, DR-mediated activation of ZIP-2 does not require the TOR/S6K effector PHA-4/FOXA. Furthermore, zip-2 was not activated or required for longevity in daf-2 mutants, which mimic a low nutrition status. Thus, DR appears to activate ZIP-2 independently of PHA-4/FOXA and DAF-2. The link between DR, aging, and immune activation provides practical insight into the DR-induced benefits on health span and longevity.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/inmunología , Proteínas de Caenorhabditis elegans/inmunología , Restricción Calórica , Dieta/efectos adversos , Envejecimiento Saludable/inmunología , Animales , Caenorhabditis elegans/inmunología
19.
Islets ; 11(2): 33-43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31084527

RESUMEN

Pancreatic islets play an essential role in regulating blood glucose levels. Age-dependent development of glucose intolerance and insulin resistance results in hyperglycemia, which in turn stimulates insulin synthesis and secretion from aged islets, to fulfill the increased demand for insulin. However, the mechanism underlying enhanced insulin secretion remains unknown. Glutamic acid decarboxylase 67 (GAD67) catalyzes the conversion of glutamate into γ-aminobutyric acid (GABA) and CO2. Both glutamate and GABA can affect islet function. Here, we investigated the role of GAD67 in insulin secretion in young (3 month old) and aged (24 month old) C57BL/6J male mice. Unlike young mice, aged mice displayed glucose-intolerance and insulin-resistance. However, aged mice secreted more insulin and showed lower fed blood glucose levels than young mice. GAD67 levels in primary islets increased with aging and in response to high glucose levels. Inhibition of GAD67 activity using a potent inhibitor of GAD, 3-mercaptopropionic acid, abrogated glucose-stimulated insulin secretion from a pancreatic ß-cell line and from young and aged islets. Collectively, our results suggest that blood glucose levels regulate GAD67 expression, which contributes to ß-cell responses to impaired glucose homeostasis caused by advanced aging.


Asunto(s)
Envejecimiento/metabolismo , Glutamato Descarboxilasa/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , ARN Mensajero/metabolismo , Ácido 3-Mercaptopropiónico/farmacología , Factores de Edad , Animales , Autoanticuerpos/sangre , Línea Celular , Senescencia Celular , Inhibidores Enzimáticos/farmacología , Células Secretoras de Glucagón/metabolismo , Glucosa/farmacología , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/inmunología , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL
20.
Sci Rep ; 9(1): 3599, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837647

RESUMEN

Plant roots provide structural support and absorb nutrients and water; therefore, their proper development and function are critical for plant survival. Extensive studies on the early stage of ontogenesis of the primary root have revealed that the root apical meristem (RAM) undergoes dynamic structural and organizational changes during early germination. Quiescent center (QC) cells, a group of slowly dividing cells at the center of the stem-cell niche, are vital for proper function and maintenance of the RAM. However, temporal aspects of molecular and cellular changes in QC cells and their regulatory mechanisms have not been well studied. In the present study, we investigated temporal changes in QC cell size, expression of QC cell-specific markers (WOX5 and QC25), and genotoxic tolerance and division rate of QC cells in the Arabidopsis primary root. Our data revealed the decreased size of QC cells and the decreased expression of the QC cell-specific markers with root age. We also found that QC cell division frequency increased with root age. Furthermore, our study provides evidence supporting the link between the transition of QC cells from a mitotically quiescent state to the frequently dividing state and the decrease in tolerance to genotoxic stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , División Celular , Daño del ADN , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Germinación , Meristema/metabolismo , Raíces de Plantas/metabolismo , Transducción de Señal , Nicho de Células Madre , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...