Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMJ Glob Health ; 4(2): e001286, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139447

RESUMEN

OBJECTIVES: To examine the impact and cost-effectiveness of user fee exemption by contracting out essential health package services to Christian Health Association of Malawi (CHAM) facilities through service-level agreements (SLAs) to inform policy-making in Malawi. METHODS: The analysis was conducted from the government perspective. Financial and service utilisation data were collected for January 2015 through December 2016. The impact of SLAs on utilisation of maternal and child health (MCH) services was examined using propensity score matching and random-effects models. Subsequently, the improved services were converted to quality-adjusted life years (QALYs) gained, using the Lives Saved Tool (LiST), and incremental cost-effectiveness ratios (ICERs) were generated. FINDINGS: Over the 2 years, a total of $1.5 million was disbursed to CHAM facilities through SLAs, equivalent to $1.24 per capita. SLAs were associated with a 13.8%, 13.1%, 19.2% and 9.6% increase in coverage of antenatal visits, postnatal visits, delivery by skilled birth attendants and BCG vaccinations, respectively. This was translated into 434 lives saved (95% CI 355 to 512) or 11 161 QALYs gained (95% CI 9125 to 13 174). The ICER of SLAs was estimated at $134.7/QALYs gained (95% CI $114.1 to $164.7). CONCLUSIONS: The cost per QALY gained for SLAs was estimated at $134.7, representing 0.37 of Malawi's per capita gross domestic product ($363). Thus, MCH services provided with Malawi's SLAs proved cost-effective. Future refinements of SLAs could introduce pay for performance, revising the price list, streamlining the reporting system and strengthening CHAM facilities' financial and monitoring management capacity.

3.
Carbohydr Polym ; 180: 231-237, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29103501

RESUMEN

Developing hydrogels with enhanced mechanical strength is desirable for bio-related applications. For such applications, cellulose is a notable biopolymer for hydrogel synthesis due to its inherent strength and stiffness. Here, we report the viscosity-adjusted synthesis of a high-strength hydrogel through the physical entanglement of microcrystalline cellulose (MCC) in a solvent mixture of tetrabutylammonium fluoride/dimethyl sulfoxide (TBAF/DMSO). MCC was strategically dissolved with TBAF in DMSO at a controlled ratio to induce the formation of a liquid crystalline phase (LCP), which was closely related to the viscosity of the cellulose solution. The highest viscosity was obtained at 2.5% MCC and 3.5% TBAF, leading to the strongest high-strength MCC hydrogel (strongest HS-MCC hydrogel). The resulting hydrogel exhibited a high compressive strength of 0.38MPa and a densely packed structure. Consequently, a positive linear correlation was determined between the viscosity of the cellulose solution and the mechanical strength of the HS-MCC hydrogel.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA