Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 10(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37237615

RESUMEN

BACKGROUND: Multi-dimensional facial imaging is increasingly used in hospital clinics. A digital twin of the face can be created by reconstructing three-dimensional (3D) facial images using facial scanners. Therefore, the reliability, strengths, and weaknesses of scanners should be investigated and approved; Methods: Images obtained from three facial scanners (RayFace, MegaGen, and Artec Eva) were compared with cone-beam computed tomography images as the standard. Surface discrepancies were measured and analyzed at 14 specific reference points; Results: All scanners used in this study achieved acceptable results, although only scanner 3 obtained preferable results. Each scanner exhibited weak and strong points because of differences in the scanning methods. Scanner 2 exhibited the best result on the left endocanthion; scanner 1 achieved the best result on the left exocanthion and left alare; and scanner 3 achieved the best result on the left exocanthion (both cheeks); Conclusions: These comparative analysis data can be used when creating digital twins through segmentation, selecting and merging data, or developing a new scanner to overcome all shortcomings.

2.
J Clin Periodontol ; 49(9): 932-944, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35373367

RESUMEN

AIM: To study the role of sclerostin in periodontal ligament (PDL) as a homeostatic regulator in biophysical-force-induced tooth movement (BFTM). MATERIALS AND METHODS: BFTM was performed in rats, followed by microarray, immunofluorescence, in situ hybridization, and real-time polymerase chain reaction for the detection and identification of the molecules. The periodontal space was analysed via micro-computed tomography. Effects on osteoclastogenesis and bone resorption were evaluated in the bone-marrow-derived cells in mice. In vitro human PDL cells were subjected to biophysical forces. RESULTS: In the absence of BFTM, sclerostin was hardly detected in the periodontium except in the PDL and alveolar bone in the furcation region and apex of the molar roots. However, sclerostin was up-regulated in the PDL in vivo by adaptable force, which induced typical transfiguration without changes in periodontal space as well as in vitro PDL cells under compression and tension. In contrast, the sclerostin level was unaffected by heavy force, which caused severe degeneration of the PDL and narrowed periodontal space. Sclerostin inhibited osteoclastogenesis and bone resorption, which corroborates the accelerated tooth movement by the heavy force. CONCLUSIONS: Sclerostin in PDL may be a key homeostatic molecule in the periodontium and a biological target for the therapeutic modulation of BFTM.


Asunto(s)
Resorción Ósea , Ligamento Periodontal , Animales , Humanos , Ratones , Ligando RANK , Ratas , Técnicas de Movimiento Dental , Microtomografía por Rayos X
3.
J Mol Histol ; 52(1): 63-75, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33141361

RESUMEN

Much information is currently available for molecules in early odontogenesis, but there is limited knowledge regarding terminal cytodifferentiation of ameloblasts and odontoblasts for the determination of normal crown morphology. The present differential display PCR (DD-PCR) revealed that insulin-like growth factor-binding protein 5 (IGFBP5) was differentially expressed in molar tooth germs between the cap (before crown mineralization) and root formation (after crown mineralization) stages. Real-time PCR confirmed that the expression levels of IGFBP1-4 were not significantly changed but those of IGFBP5-7 were upregulated in a time-dependent manner. Immunoreactivities for IGFBP5-7 were hardly seen in molar germs at the cap/early bell stage and protective-stage ameloblasts at the root formation stage. However, the reactivity was strong in odontoblasts and maturation-stage ameloblasts, which are morphologically and functionally characterized by wide intercellular space and active enamel matrix mineralization. The localization of each IGFBP was temporospatial. IGFBP5 was localized in the nuclei of fully differentiated odontoblasts and ameloblasts, while IGFBP6 was localized in the apical cytoplasm of ameloblasts and odontoblasts with dentinal tubules, and IGFBP7 was mainly found in the whole cytoplasm of odontoblasts and the intercellular space of ameloblasts. IGFBP silencing using specific siRNAs upregulated representative genes for dentinogenesis and amelogenesis, such as DMP1 and amelogenin, respectively, and augmented the differentiation media-induced mineralization, which was confirmed by alizarin red s and alkaline phosphatase staining. These results suggest that IGFBP5-7 may play independent and redundant regulatory roles in late-stage odontogenesis by modulating the functional differentiation of ameloblasts and odontoblasts.


Asunto(s)
Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Odontogénesis , Calcificación de Dientes , Amelogénesis/genética , Animales , Esmalte Dental/metabolismo , Dentina/metabolismo , Regulación de la Expresión Génica , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Diente Molar/metabolismo , Odontoblastos/metabolismo , Odontogénesis/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Calcificación de Dientes/genética , Germen Dentario/metabolismo , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...