Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38139137

RESUMEN

Agrimonia pilosa Ledeb., an important medicinal herb in traditional East Asian medicine, is primarily used to treat abdominal pain, dysentery, and hemostasis. There are ten other reported species of Agrimonia plants, including Agrimonia coreana Nakai-a naturally growing species in South Korea-and Agrimonia eupatoria Linn. Although recent studies have isolated numerous active constituents and investigated their effects, the medicinal utility of this herb is not yet fully explored. Through patch-clamp recording, a previous study reported that Agrimonia plant extracts inhibit the function of Ca2+ release-activated Ca2+ channels (CRACs). Herein, we aimed to identify and isolate the main compounds in A. coreana responsible for CRAC inhibition while assessing the anti-inflammatory effects mediated by this inhibition. We demonstrated for the first time that alphitolic acid isolated from A. coreana has a dose-dependent inhibitory effect on CRAC activity and, thus, an inhibitory effect on intracellular calcium increase. Furthermore, analysis of human CD4+ T cell proliferation via the carboxyfluorescein diacetate succinimidyl ester method revealed that alphitolic acid inhibited T cell proliferation in a concentration-dependent manner. Our findings provide a theoretical basis for the potential therapeutic use of alphitolic acid in the treatment of inflammatory diseases.


Asunto(s)
Agrimonia , Humanos , Linfocitos T , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología
2.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677776

RESUMEN

In this study, we aimed to develop and validate a pretreatment method for separating and analyzing the small amounts of biomarkers contained in topical cream formulations. Analyzing semisolid formulations that contain low concentrations of active ingredients is difficult. Cream formulations containing an aqueous ethanol extract of 0.1% Agrimonia pilosa is an example. Approximately 0.0013% of apigenin-7-O-glucuronide(A7OG) was contained as a biomarker in the cream. To determine the A7OG content present in the cream formulation, liquid-liquid extraction using dichlormethane was applied. In addition, the volume of the distribution liquid was measured using the peak ratios of the indicator component, A7OG, and an internal standard, baicalin. Subsequently, the A7OG content in the cream formulation was calculated. Using this time-saving method, A7OG can be simply analyzed without additional pretreatment steps, such as evaporation and reconstitution. Moreover, the validation results confirmed that this analytical method met all of the criteria. Consequently, A7OG was successfully isolated from the cream, analyzed, and quantified using the developed method.


Asunto(s)
Agrimonia , Extractos Vegetales , Cromatografía Líquida de Alta Presión , Agua , Etanol , Extracción Líquido-Líquido
3.
J Ethnopharmacol ; 289: 115061, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35114342

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Flos Magnoliae (the dried flower buds of Magnolia biondii Pamp, FM) is a known herbal traditional medicine used for the symptomatic relief of nasal congestion and rhinorrhea caused by rhinitis and sinusitis. Magnolol, a neolignan from the magnolia family, is a secondary metabolite known to have anti-allergic and anti-inflammatory effects. However, the underlying mechanisms and therapeutic effect of magnolol in the treatment of allergic rhinitis (AR) remain elusive. AIMS OF THE STUDY: Anoctamin 1 (ANO1), a calcium-activated anion channel, mediates mucus and electrolyte secretion in nasal airway epithelial cells, whereas calcium release-activated calcium channel protein 1 (ORAI1) participates in the activation of T-lymphocytes and mast cells. The aim of our study is to understand the mechanisms of action of magnolol against AR, i.e., whether it acts through the modulation of ANO1 and ORAI1 channels that are expressed in nasal epithelial cells and T-lymphocytes, respectively. MATERIALS AND METHODS: Whole-cell patch clamp was used to record the activity of ORAI1 and ANO1 ion channels in ORAI1 or ANO1 overexpressed HEK293T cells, while the Ussing chamber apparatus was used to measure electrolyte transport via the epithelium, in Calu-3 cells cultured in an air-liquid interface. Additionally, calcium imaging of Jurkat T-lymphocytes was used to assess changes in the intracellular calcium concentration. Magnolol toxicity was assessed using the CCK-8 assay, and its effect on T-lymphocyte proliferation was measured by labeling human primary T-lymphocytes with carboxyfluorescein succinimidyl ester. Finally, OVA-induced Balb/c mice were employed to evaluate the effect of magnolol on nasal symptoms, as well as cytokine and eosinophil infiltration in AR. RESULTS: Magnolol inhibits ORAI1 and ANO1 channels in a concentration-dependent manner. Magnolol (30 µM) inhibits anti-CD3 induced cellular proliferation and production of IL-2 via ORAI1 channels in T-lymphocytes. Further, ATP-induced electrolyte transport mediated by ANO1 channels is significantly inhibited by magnolol in IL-4 sensitized Calu-3 cells. Notably, 300 µM magnolol significantly attenuates cytokine and eosinophil infiltration, thus alleviating AR symptoms in mice OVA-induced AR. CONCLUSION: Magnolol may be a promising therapeutic agent for the treatment and prevention of AR.


Asunto(s)
Antialérgicos/farmacología , Compuestos de Bifenilo/farmacología , Lignanos/farmacología , Magnolia/química , Rinitis Alérgica/tratamiento farmacológico , Animales , Anoctamina-1/antagonistas & inhibidores , Antialérgicos/administración & dosificación , Antialérgicos/aislamiento & purificación , Compuestos de Bifenilo/administración & dosificación , Compuestos de Bifenilo/aislamiento & purificación , Línea Celular Tumoral , Citocinas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Flores , Células HEK293 , Humanos , Lignanos/administración & dosificación , Lignanos/aislamiento & purificación , Ratones , Ratones Endogámicos BALB C , Proteínas de Neoplasias/antagonistas & inhibidores , Proteína ORAI1/antagonistas & inhibidores , Ovalbúmina , Técnicas de Placa-Clamp
4.
PeerJ ; 9: e10973, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717700

RESUMEN

BACKGROUND: As one of the main components of mangosteen (Garcinia mangostana), a tropical fruit, α-mangostin has been reported to have numerous pharmacological benefits such as anti-cancer, anti-inflammatory, and anti-allergic effects through various mechanisms of action. The effects of α-mangostin on intracellular signaling proteins is well studied, but the effects of α-mangostin on ion channels and its physiological effects in immune cells are unknown. Generation of intracellular calcium signaling is a fundamental step for T cell receptor stimulation. This signaling is mediated not only by the ORAI1 calcium channel, but also by potassium ion channels, which provide the electrical driving forces for generating sufficient calcium ion influx. This study investigated whether α-mangosteen suppress T cell stimulation by inhibiting ORAI1 and two kinds of potassium channels (Kv1.3 and KCa3.1), which are normally expressed in human T cells. METHODS: This study analyzed the inhibitory effect of α-mangostin on immune cell activity via inhibition of calcium and potassium ion channels expressed in immune cells. RESULTS: α-mangostin inhibited ORAI1 in a concentration-dependent manner, and the IC50 value was 1.27 ± 1.144 µM. Kv1.3 was suppressed by 41.38 ± 6.191% at 3 µM, and KCa3.1 was suppressed by 51.16 ± 5.385% at 3 µM. To measure the inhibition of cytokine secretion by immune cells, Jurkat T cells were stimulated to induce IL-2 secretion, and α-mangostin was found to inhibit it. This study demonstrated the anti-inflammatory effect of α-mangostin, the main component of mangosteen, through the regulation of calcium signals.

5.
Korean J Physiol Pharmacol ; 24(4): 329-338, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32587127

RESUMEN

Rhinorrhea in allergic rhinitis (AR) is characterized by the secretion of electrolytes in the nasal discharge. The secretion of Cl- and HCO3- is mainly regulated by cystic fibrosis transmembrane conductance regulator (CFTR) or via the calciumactivated Cl- channel anoctamin-1 (ANO1) in nasal gland serous cells. Interleukin-4 (IL-4), which is crucial in the development of allergic inflammation, increases the expression and activity of ANO1 by stimulating histamine receptors. In this study, we investigated ANO1 as a potential therapeutic target for rhinorrhea in AR using an ANO1 inhibitor derived from a natural herb. Ethanolic extracts (30%) of Spirodela polyrhiza (SPEtOH) and its five major flavonoids constituents were prepared. To elucidate whether the activity of human ANO1 (hANO1) was modulated by SPEtOH and its chemical constituents, a patch clamp experiment was performed in hANO1-HEK293T cells. Luteolin, one of the major chemical constituents in SPEtOH, significantly inhibited hANO1 activity in hANO1-HEK293T cells. Further, SPEtOH and luteolin specifically inhibited the calcium-activated chloride current, but not CFTR current in human airway epithelial Calu-3 cells. Calu-3 cells were cultured to confluency on transwell inserts in the presence of IL-4 to measure the electrolyte transport by Ussing chamber. Luteolin also significantly inhibited the ATP-induced increase in electrolyte transport, which was increased in IL-4 sensitized Calu-3 cells. Our findings indicate that SPEtOH- and luteolin may be suitable candidates for the prevention and treatment of allergic rhinitis. SPEtOH- and luteolin-mediated ANO1 regulation provides a basis for the development of novel approaches for the treatment of allergic rhinitis-induced rhinorrhea.

6.
Korean J Physiol Pharmacol ; 24(4): 363-372, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32587130

RESUMEN

Gardenia jasminoides (GJ) is a widely used herbal medicine with antiinflammatory properties, but its effects on the ORAI1 channel, which is important in generating intracellular calcium signaling for T cell activation, remain unknown. In this study, we investigated whether 70% ethanolic GJ extract (GJEtOH) and its subsequent fractions inhibit ORAI1 and determined which constituents contributed to this effect. Whole-cell patch clamp analysis revealed that GJEtOH (64.7% ± 3.83% inhibition at 0.1 mg/ml) and all its fractions showed inhibitory effects on the ORAI1 channel. Among the GJ fractions, the hexane fraction (GJHEX, 66.8% ± 9.95% at 0.1 mg/ml) had the most potent inhibitory effects in hORAI1-hSTIM1 co-transfected HEK293T cells. Chemical constituent analysis revealed that the strong ORAI1 inhibitory effect of GJHEX was due to linoleic acid, and in other fractions, we found that genipin inhibited ORAI1. Genipin significantly inhibited IORAI1 and interleukin-2 production in CD3/ CD28-stimulated Jurkat T lymphocytes by 35.9% ± 3.02% and 54.7% ± 1.32% at 30 µM, respectively. Furthermore, the same genipin concentration inhibited the proliferation of human primary CD4+ T lymphocytes stimulated with CD3/CD28 antibodies by 54.9% ± 8.22%, as evaluated by carboxyfluorescein succinimidyl ester assay. Our findings suggest that genipin may be one of the active components of GJ responsible for T cell suppression, which is partially mediated by activation of the ORAI1 channel. This study helps us understand the mechanisms of GJ in the treatment of inflammatory diseases.

7.
Am J Chin Med ; 47(7): 1627-1641, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31659911

RESUMEN

Intracellular calcium signaling is crucial for type 2 helper T cell and mast cell activation, which is essential for allergic inflammation. It is initiated by antigen-mediated receptor stimulation that triggers store-operated calcium entry (SOCE) via ORAI1 calcium channel. Flos Magnoliae (FM) is widely used to treat allergic diseases such as allergic rhinitis and asthma. Although many studies have reported that FM regulates intracellular calcium signaling, research on the exact type of calcium channel modulated by FM is scarce. Therefore, we hypothesized that the anti-allergic effects of FM might result from ORAI1 inhibition in T cells. We investigated whether a 70% ethanolic extract of FM (FMEtOH) and its constituents inhibit ORAI1 channel activity and subsequent T cell activation. We performed conventional whole-cell patch clamp studies in hSTIM1 and hORAI1-overexpressing HEK293T cells (HEKORAI1). Intracellular calcium concentration was determined using Fura-2 dye and cytokine production measurement in Jurkat T lymphocytes. FMEtOH (0.03 mg/mL) and its fractions, especially hexane fraction (FMHex, 0.01 mg/mL), significantly inhibited SOCE and IL-2 cytokine production in Jurkat T lymphocytes. GC/MS analysis showed linoleic acid (LA) as the major component of FMHex. FMHex at 0.01 mg/mL (equivalent to 10 µM LA) inhibited not only SOCE but also IL-2 production, as well as CD3/CD28 receptor co-stimulation induced calcium signaling in Jurkat T lymphocytes. FMEtOH and LA suppressed CD4+ T lymphocyte activation, at least in part, by inhibiting ISOCE. Thus, ISOCE inhibition may be a potential strategy to inhibit immune responses in inflammation.


Asunto(s)
Calcio/metabolismo , Medicamentos Herbarios Chinos/farmacología , Ácido Linoleico/farmacología , Magnolia/química , Linfocitos T/efectos de los fármacos , Medicamentos Herbarios Chinos/análisis , Flores/química , Humanos , Interleucina-2/genética , Interleucina-2/inmunología , Ácido Linoleico/análisis , Activación de Linfocitos/efectos de los fármacos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
8.
Korean J Physiol Pharmacol ; 22(6): 697-703, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30402030

RESUMEN

Myoblast fusion depends on mitochondrial integrity and intracellular Ca2+ signaling regulated by various ion channels. In this study, we investigated the ionic currents associated with [Ca2+]i regulation in normal and mitochondrial DNA-depleted (ρ0) L6 myoblasts. The ρ0 myoblasts showed impaired myotube formation. The inwardly rectifying K+ current (IKir) was largely decreased with reduced expression of KIR2.1, whereas the voltage-operated Ca2+ channel and Ca2+-activated K+ channel currents were intact. Sustained inhibition of mitochondrial electron transport by antimycin A treatment (24 h) also decreased the IKir. The ρ0 myoblasts showed depolarized resting membrane potential and higher basal [Ca2+]i. Our results demonstrated the specific downregulation of IKir by dysfunctional mitochondria. The resultant depolarization and altered Ca2+ signaling might be associated with impaired myoblast fusion in ρ0 myoblasts.

9.
Am J Chin Med ; 46(6): 1243-1261, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30149756

RESUMEN

Intracellular calcium signaling cascades are integral to early and late allergic responses involving mast cell degranulation and type 2 helper T cell activation, respectively. Both the responses are accompanied by the movement of calcium through the calcium release-activated calcium (CRAC) channel, encoded by the ORAI1 gene. Spirodela polyrhiza (L.) Schleid (SP) has anti-inflammatory and anti-allergic effects, but its effect on calcium signaling has not been reported. This study investigated whether a 30% ethanolic SP extract (SPEtOH) and its constituents can reduce CRAC currents ([Formula: see text]), and thus inhibit mast cell degranulation and T cell activation. In Jurkat T lymphocytes, we found that 3[Formula: see text]mg/mL SPEtOH inhibited the [Formula: see text] by [Formula: see text]%, whereas one of its constituents vitexin (100[Formula: see text][Formula: see text]M) inhibited the [Formula: see text] by [Formula: see text]%. Furthermore, in the RBL-2H3 mast cell, the [Formula: see text] was inhibited by 3[Formula: see text]mg/mL SPEtOH ([Formula: see text]%) and 100[Formula: see text][Formula: see text]M vitexin ([Formula: see text]%). Investigation of human primary T cell proliferation induced by co-stimulation with antibodies to cluster of differentiation 3 and 28, and of RBL-2H3 mast cell degranulation following IgE-antigen complex stimulation revealed that 100[Formula: see text][Formula: see text]M vitexin inhibited both T-cell proliferation (by [Formula: see text]%) and mast cell degranulation (by [Formula: see text]%). These effects were concentration-dependent, and no cytotoxicity was observed. Our findings suggest that vitexin is a promising candidate compound for the development of therapeutic agents to prevent and treat allergic diseases.


Asunto(s)
Alismatales/química , Antialérgicos , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Proteína ORAI1/metabolismo , Extractos Vegetales/farmacología , Apigenina/aislamiento & purificación , Apigenina/farmacología , Calcio/metabolismo , Degranulación de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Hipersensibilidad/tratamiento farmacológico , Activación de Linfocitos/efectos de los fármacos , Mastocitos/fisiología , Fitoterapia , Extractos Vegetales/uso terapéutico , Linfocitos T/inmunología
10.
Am J Chin Med ; 46(5): 1079-1092, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29976084

RESUMEN

Flos Magnoliae (FM, Chinese name: Xin-yi) is an oriental medicinal herb commonly used for symptomatic relief from allergic rhinitis, sinusitis, and headache, including in traditional Chinese and Korean medicine formulations. FM inhibits histamine release from mast cells and cytokine secretion from T cells. However, the mechanism of action of FM on the anoctamin-1 (ANO1) ion channel, which is responsible for nasal hypersecretion in allergic rhinitis, has not been elucidated. Therefore, in this study, we investigated the effect of a 30% ethanolic extract of FM (FMEtOH) and its chemical constituents on ANO1 activity. We used high-performance liquid chromatography analysis to identify five major chemical constituents of FMEtOH: vanillic acid, tiliroside, eudesmin, magnolin, and fargesin. Using a conventional whole-cell patch clamp method, we found that FMEtOH (30, 100, and 300[Formula: see text][Formula: see text]g/mL) and its chemical constituent tiliroside inhibited ANO1 activity in ANO1-overexpressing HEK293T cells. In addition, we found that the treatment of the airway epithelial cell line Calu-3 with interleukin 4 significantly increased Ca[Formula: see text] activated Cl[Formula: see text] current (ICaCC), but not cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride current (ICFTR). FMEtOH and tiliroside specifically inhibited ICaCC. Thus, in this study, we identified a novel mechanism underlying the alleviation of allergic rhinitis by FMEtOH. Our results indicate that FMEtOH and its chemical constituent tiliroside are promising and potent agents for the prevention and treatment of allergic rhinitis.


Asunto(s)
Anoctamina-1/metabolismo , Cloruros/metabolismo , Magnolia/química , Proteínas de Neoplasias/metabolismo , Extractos Vegetales/farmacología , Rinitis Alérgica/tratamiento farmacológico , Animales , Anoctamina-1/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células HEK293 , Liberación de Histamina/efectos de los fármacos , Humanos , Proteínas de Neoplasias/genética , Técnicas de Placa-Clamp , Extractos Vegetales/química , Rinitis Alérgica/genética , Rinitis Alérgica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...