Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 5(4): 305-17, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24483607

RESUMEN

The multidrug resistance transporter P-glycoprotein (P-gp) is highly expressed in the capillary endothelial cells of the blood-brain barrier (BBB) where it functions to limit the brain penetration of many drugs, including antipsychotic agents used to treat schizophrenia. Therefore, in an effort to inhibit the transporter, we designed dimers of the antipsychotic drug and P-gp substrate quetiapine (QT), linked by variable length tethers. In P-gp overexpressing cells and in human brain capillary endothelial hCMEC/D3 cells, the dimer with the shortest tether length (QT2C2) (1) was the most potent inhibitor showing >80-fold better inhibition of P-gp-mediated transport than monomeric QT. The dimers, which are linked via ester moieties, are designed to revert to the therapeutic monomer once inside the target cells. We demonstrated that the addition of two sterically blocking methyl groups to the linker (QT2C2Me2, 8) increased the half-life of the molecule in plasma 10-fold as compared to the dimer lacking methyl groups (QT2C2, 1), while retaining inhibitory potency for P-gp transport and sensitivity to cellular esterases. Experiments with purified P-gp demonstrated that QT2C2 (1) and QT2C2Me2 (8) interacted with both the H- and R-binding sites of the transporter with binding affinities 20- to 30-fold higher than that of monomeric QT. Using isolated rat brain capillaries, QT2C2Me2 (8) was a more potent inhibitor of P-gp transport than QT. Lastly, we showed that QT2C2Me2 (8) increased the accumulation of the P-gp substrate verapamil in rat brain in situ three times more than QT. Together, these results indicate that the QT dimer QT2C2Me2 (8) strongly inhibited P-gp transport activity in human brain capillary endothelial cells, in rat brain capillaries, and at the BBB in an animal model.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Capilares/metabolismo , Dibenzotiazepinas/química , Dibenzotiazepinas/metabolismo , Células Endoteliales/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sitios de Unión , Células Cultivadas , Dimerización , Humanos , Unión Proteica , Fumarato de Quetiapina
2.
Medchemcomm ; 4(10)2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24273637

RESUMEN

A major hurdle in permanently eliminating HIV from the body is the persistence of viral reservoirs, including those of the brain. One potential strategy towards eradicating HIV reservoirs of the brain is to block efflux transporters, such as P-glycoprotein (P-gp), that contribute to the limited penetration of antiviral agents across the blood-brain barrier (BBB). Herein, we described a series of dimeric inhibitors of P-gp based on the nucleoside reverse transcriptase inhibitor and P-gp substrate, abacavir. Varying tether lengths were used to generate abacavir dimers to probe tether requirements for inhibitory potency. These dimeric agents were evaluated in two cell lines that express P-gp at varying levels: a P-gp over-expressing CD4+ T-lymphocyte cell line (12D7-MDR) and a human brain capillary endothelial cell line as an in vitro model of the BBB (hCMEC/D3) that expresses endogenous levels of P-gp. All dimeric abacavir analogs were inhibitors of P-gp efflux in the two cell lines with potencies that varied with tether length; the most potent agents displayed low micromolar inhibition. P-gp inhibition in a highly P-gp over-expressing cell line (MCF-7/DX1) was also observed with a range of therapeutic substrates. Competition studies with the photoaffinity substrate [125I]iodoarylazidoprazosin demonstrated that abacavir dimers act by competing for the substrate binding sites of P-gp. These data demonstrate that the tether length of dimeric abacavir derivatives has a significant effect on inhibition of P-gp drug efflux, with up to a 35-fold increase in potency observed with longer tether linkages.

3.
J Am Chem Soc ; 134(6): 2976-80, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21866921

RESUMEN

Eradication of HIV reservoirs in the brain necessitates penetration of antiviral agents across the blood-brain barrier (BBB), a process limited by drug efflux proteins such as P-glycoprotein (P-gp) at the membrane of brain capillary endothelial cells. We present an innovative chemical strategy toward the goal of therapeutic brain penetration of the P-gp substrate and antiviral agent abacavir, in conjunction with a traceless tether. Dimeric prodrugs of abacavir were designed to have two functions: inhibit P-gp efflux at the BBB and revert to monomeric therapeutic within cellular reducing environments. The prodrug dimers are potent P-gp inhibitors in cell culture and in a brain capillary model of the BBB. Significantly, these agents demonstrate anti-HIV activity in two T-cell-based HIV assays, a result that is linked to cellular reversion of the prodrug to abacavir. This strategy represents a platform technology that may be applied to other therapies with limited brain penetration due to P-glycoprotein.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Barrera Hematoencefálica/efectos de los fármacos , Didesoxinucleósidos/farmacología , Infecciones por VIH/tratamiento farmacológico , Profármacos/farmacología , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Adenosina Trifosfato/química , Fármacos Anti-VIH/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/virología , Células Cultivadas , Química Farmacéutica/métodos , Dimerización , Humanos , Concentración 50 Inhibidora , Modelos Químicos
4.
Biochem Biophys Res Commun ; 388(4): 672-6, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19683513

RESUMEN

The human multidrug resistance transporter P-glycoprotein (P-gp) prevents the entry of compounds into the brain by an active efflux mechanism at the blood-brain barrier (BBB). Treatment of neurodegenerative diseases, therefore, has become a challenge and the development of new reversible inhibitors of P-gp is pertinent to overcome this problem. We report the design and synthesis of a crosslinked agent based on the Alzheimer's disease treatment galantamine (Gal-2) that inhibits P-gp-mediated efflux from cultured cells. Gal-2 was found to inhibit the efflux of the fluorescent P-gp substrate rhodamine 123 in cancer cells that over-express P-gp with an IC(50) value of approximately 0.6 microM. In addition, Gal-2 was found to inhibit the efflux of therapeutic substrates of P-gp, such as doxorubicin, daunomycin and verapamil with IC(50) values ranging from 0.3 to 1.6 microM. Through competition experiments, it was determined that Gal-2 modulates P-gp mediated efflux by competing for the substrate binding sites. These findings support a potential role of agents, such as Gal-2, as inhibitors of P-gp at the BBB to augment treatment of neurodegenerative diseases.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Barrera Hematoencefálica/efectos de los fármacos , Galantamina/farmacología , Antibióticos Antineoplásicos/farmacología , Barrera Hematoencefálica/metabolismo , Daunorrubicina/farmacología , Dimerización , Doxorrubicina/farmacología , Galantamina/química , Humanos , Concentración 50 Inhibidora , Verapamilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA