Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(25): 17240-17249, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38865148

RESUMEN

Antibiotic-resistant pathogens have been declared by the WHO as one of the major public health threats facing humanity. For that reason, there is an urgent need for materials with inherent antibacterial activity able to replace the use of antibiotics, and in this context, hydrogels have emerged as a promising strategy. Herein, we introduce the next generation of cationic hydrogels with antibacterial activity and high versatility that can be cured on demand in less than 20 s using thiol-ene click chemistry (TEC) in aqueous conditions. The approach capitalizes on a two-component system: (i) telechelic polyester-based dendritic-linear-dendritic (DLDs) block copolymers of different generations heterofunctionalized with allyl and ammonium groups, as well as (ii) polyethylene glycol (PEG) cross-linkers functionalized with thiol groups. These hydrogels resulted in highly tunable materials where the antibacterial performance can be adjusted by modifying the cross-linking density. Off-stoichiometric hydrogels showed narrow antibacterial activity directed toward Gram-negative bacteria. The presence of pending allyls opens up many possibilities for functionalization with biologically interesting molecules. As a proof-of-concept, hydrophilic cysteamine hydrochloride as well as N-hexyl-4-mercaptobutanamide, as an example of a thiol with a hydrophobic alkyl chain, generated three-component networks. In the case of cysteamine derivatives, a broader antibacterial activity was noted than the two-component networks, inhibiting the growth of Gram-positive bacteria. Additionally, these systems presented high versatility, with storage modulus values ranging from 270 to 7024 Pa and different stability profiles ranging from 1 to 56 days in swelling experiments. Good biocompatibility toward skin cells as well as strong adhesion to multiple surfaces place these hydrogels as interesting alternatives to conventional antibiotics.


Asunto(s)
Antibacterianos , Hidrogeles , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/síntesis química , Dendrímeros/química , Dendrímeros/farmacología , Pruebas de Sensibilidad Microbiana , Adhesivos/química , Adhesivos/farmacología , Polietilenglicoles/química , Polietilenglicoles/farmacología , Polímeros/química , Polímeros/farmacología , Humanos , Estructura Molecular , Química Clic
2.
ACS Appl Polym Mater ; 5(12): 10395-10403, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38094596

RESUMEN

Hydroxyapatite (HA) infused triazine-trione (TATO) composites have emerged as an injectable platform for customizable bone fixators due to their fast and benign curing via high-energy visible light-induced thiol-ene chemistry (HEV-TEC), promising mechanical performance, and preclinical outcomes. These composites can overcome many of the existing limitations accompanying metal implants such as poor patient customizability, soft tissue adhesions, and stress shielding. Taking into account that the promising benchmarked TATO composite (BC) is based on stable sulfur-carbon bonds, we herein investigate the impact of introducing polyester dendritic cross-linkers based on bis-MPA as chemically integrated branched additives that display labile esters in a branched configuration. The inclusion of dendrimers, G1 and G3, in concentrations of 1, 3, and 5 wt % in the composite formulations were found to (i) decrease the processing viscosity of the composite formulations, reaching Newtonic and nonshear thinning behavior at 37 °C and (ii) impact the size distribution of bubble cavities in the composite cross sections. The lowest collected Tg for the dendrimer-containing composites was noted to be 73.2 °C, a temperature well above physiological temperature. Additionally, all composites displayed flexural modulus above 6 GPa and flexural strength of ca. 50 MPa under dry conditions. The composites comprising 5 wt % of G1 and G3 dendrimers, with ester bond densities of 0.208 and 0.297 mmol/g, respectively, reached a mass loss up to 0.27% in phosphate buffered saline at 37 °C, which is within the range of established polycaprolactone (PCL). Combined with the nontoxic properties extracted from the cell viability study, polyester dendrimers were determined as promising additives which compatibilized well with the TATO formulation and cross-linked efficiently resulting in strong composites suited for bone fracture fixations.

3.
Nat Commun ; 14(1): 6080, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770472

RESUMEN

Singlet fission and triplet-triplet annihilation upconversion are two multiexciton processes intimately related to the dynamic interaction between one high-lying energy singlet and two low-lying energy triplet excitons. Here, we introduce a series of dendritic macromolecules that serve as platform to study the effect of interchromophore interactions on the dynamics of multiexciton generation and decay as a function of dendrimer generation. The dendrimers (generations 1-4) consist of trimethylolpropane core and 2,2-bis(methylol)propionic acid (bis-MPA) dendrons that provide exponential growth of the branches, leading to a corona decorated with pentacenes for SF or anthracenes for TTA-UC. The findings reveal a trend where a few highly ordered sites emerge as the dendrimer generation grows, dominating the multiexciton dynamics, as deduced from optical spectra, and transient absorption spectroscopy. While the dendritic structures enhance TTA-UC at low annihilator concentrations in the largest dendrimers, the paired chromophore interactions induce a broadened and red-shifted excimer emission. In SF dendrimers of higher generations, the triplet dynamics become increasingly dominated by pairwise sites exhibiting strong coupling (Type II), which can be readily distinguished from sites with weaker coupling (Type I) by their spectral dynamics and decay kinetics.

4.
Macromol Biosci ; 23(12): e2300224, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37590124

RESUMEN

Treating wound infections is a difficult task ever since pathogenic bacteria started to develop resistance to common antibiotics. The present study develops hybrid hydrogels based on the formation of a polyelectrolyte complex between the anionic charges of dopamine-functionalized Gellan Gum (GG-DA) and the cationic moieties of the TMP-G2-alanine dendrimer. The hydrogels thus obtained can be doubly crosslinked with CaCl2 , obtaining solid hydrogels. Or, by oxidizing dopamine to GG-DA, possibly causing further interactions such as Schiff Base and Michael addition to take place, hydrogels called injectables can be obtained. The latter have shear-thinning and self-healing properties (efficiency up to 100%). Human dermal fibroblasts (HDF), human epidermal keratinocytes (HaCaT), and mouse monocyte cells (RAW 264.7), after incubation with hydrogels, in most cases show cell viability up to 100%. Hydrogels exhibit adhesive behavior on various substrates, including porcine skin. At the same time, the dendrimer serves to crosslink the hydrogels and endows them with excellent broad-spectrum microbial eradication activity within four hours, evaluated using Staphylococcus aureus 2569 and Escherichia coli 178. Using the same GG-DA/TMP-G2-alanine ratios hybrid hydrogels with tunable properties and potential for wound dressing applications can be produced.


Asunto(s)
Dendrímeros , Hidrogeles , Ratones , Animales , Porcinos , Humanos , Hidrogeles/farmacología , Hidrogeles/química , Dopamina , Dendrímeros/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/química , Alanina
5.
Biomacromolecules ; 24(2): 858-867, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36689269

RESUMEN

Polyester dendrimers based on 2,2 bis(hydroxymethyl)propionic acid have been reported to be degradable, non-toxic, and exhibit good antimicrobial activity when decorated with cationic charges. However, these systems exhibit rapid depolymerization, from the outer layer inwards in physiological neutral pHs, which potentially restricts their use in biomedical applications. In this study, we present a new generation of amine functional bis-MPA polyester dendrimers with increased hydrolytic stability as well as antibacterial activity for Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) planktonic bacteria strains. These new derivatives show generally good cytocompatibility for the concentrations they are active toward bacteria, in monocyte/macrophage-like cells (Raw 264.7), and human dermal fibroblasts. Fluoride - promoted esterification chemistry, anhydride chemistry, and click reactions were utilized to produce a library from generations 1-3 and with cationic peripheral groups ranging from 6 to 24 groups, respectively. The dendrimers were successfully purified using conventional purification techniques as well as characterized by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, nuclear magnetic resonance, and size exclusion chromatography. As proof of synthetic versatility, dendritic-linear-dendritic block copolymer were successfully synthesized to display cysteamine peripheral functionalities as well as the scaffolding ability with biomedically relevant lipoic acid and methoxy polyethylene glycol.


Asunto(s)
Dendrímeros , Poliésteres , Humanos , Poliésteres/farmacología , Poliésteres/química , Dendrímeros/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología
6.
Pharmaceutics ; 12(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255607

RESUMEN

Cationic dendrimers are intriguing materials that can be used as antibacterial materials; however, they display significant cytotoxicity towards diverse cell lines at high generations or high doses, which limits their applications in biomedical fields. In order to decrease the cytotoxicity, a series of biocompatible hybrid hydrogels based on cationic dendrimers and carboxylated cellulose nanofibrils were easily synthesized by non-covalent self-assembly under physiological conditions without external stimuli. The cationic dendrimers from generation 2 (G2) to generation 4 (G4) based on trimethylolpronane (TMP) and 2,2-bis (methylol)propionic acid (bis-MPA) were synthesized through fluoride promoted esterification chemistry (FPE chemistry). FTIR was used to show the presence of the cationic dendrimers within the hybrid hydrogels, and the distribution of the cationic dendrimers was even verified using elemental analysis of nitrogen content. The hybrid hydrogels formed from G3 and G4 showed 100% killing efficiency towards Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) with bacterial concentrations ranging from 105 CFU/mL to 107 CFU/mL. Remarkably, the hybrid hydrogels also showed good biocompatibility most probably due to the incorporation of the biocompatible CNFs that slowed down the release of the cationic dendrimers from the hybrid hydrogels, hence showing great promise as an antibacterial material for biomedical applications.

7.
Chem Commun (Camb) ; 50(87): 13275-7, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25228391

RESUMEN

Pd-catalysed cross-dehydrogenative coupling of 1,3,5-trialkoxybenzenes with simple aromatic hydrocarbons is reported. The method enables the coupling of two aromatic C-H positions to generate multi-ortho-substituted biaryls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...