Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(2): e3002493, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38315724

RESUMEN

Mosquitoes of the Culex pipiens complex are worldwide vectors of arbovirus, filarial nematodes, and avian malaria agents. In these hosts, the endosymbiotic bacteria Wolbachia induce cytoplasmic incompatibility (CI), i.e., reduced embryo viability in so-called incompatible crosses. Wolbachia infecting Culex pipiens (wPip) cause CI patterns of unparalleled complexity, associated with the amplification and diversification of cidA and cidB genes, with up to 6 different gene copies described in a single wPip genome. In wPip, CI is thought to function as a toxin-antidote (TA) system where compatibility relies on having the right antidotes (CidA) in the female to bind and neutralize the male's toxins (CidB). By repeating crosses between Culex isofemale lines over a 17 years period, we documented the emergence of a new compatibility type in real time and linked it to a change in cid genes genotype. We showed that loss of specific cidA gene copies in some wPip genomes results in a loss of compatibility. More precisely, we found that this lost antidote had an original sequence at its binding interface, corresponding to the original sequence at the toxin's binding interface. We showed that these original cid variants are recombinant, supporting a role for recombination rather than point mutations in rapid CI evolution. These results strongly support the TA model in natura, adding to all previous data acquired with transgenes expression.


Asunto(s)
Culex , Wolbachia , Animales , Femenino , Masculino , Wolbachia/genética , Antídotos/metabolismo , Mosquitos Vectores/genética , Citoplasma
2.
Heredity (Edinb) ; 132(4): 179-191, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38280976

RESUMEN

Anopheles gambiae s.l. has been the target of intense insecticide treatment since the mid-20th century to try and control malaria. A substitution in the ace-1 locus has been rapidly selected for, allowing resistance to organophosphate and carbamate insecticides. Since then, two types of duplication of the ace-1 locus have been found in An. gambiae s.l. populations: homogeneous duplications that are composed of several resistance copies, or heterogeneous duplications that contain both resistance and susceptible copies. The substitution induces a trade-off between resistance in the presence of insecticides and disadvantages in their absence: the heterogeneous duplications allow the fixation of the intermediate heterozygote phenotype. So far, a single heterogeneous duplication has been described in An. gambiae s.l. populations (in contrast with the multiple duplicated alleles found in Culex pipiens mosquitoes). We used a new approach, combining long and short-read sequencing with Sanger sequencing to precisely identify and describe at least nine different heterogeneous duplications, in two populations of An. gambiae s.l. We show that these alleles share the same structure as the previously identified heterogeneous and homogeneous duplications, namely 203-kb tandem amplifications with conserved breakpoints. Our study sheds new light on the origin and maintenance of these alleles in An. gambiae s.l. populations, and their role in mosquito adaptation.


Asunto(s)
Anopheles , Culex , Insecticidas , Animales , Anopheles/genética , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Alelos , Control de Mosquitos
3.
Comput Struct Biotechnol J ; 21: 3656-3664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533804

RESUMEN

The importance of gene amplifications in evolution is more and more recognized. Yet, tools to study multi-copy gene families are still scarce, and many such families are overlooked using common sequencing methods. Haplotype reconstruction is even harder for polymorphic multi-copy gene families. Here, we show that all variants (or haplotypes) of a multi-copy gene family present in a single genome, can be obtained using Oxford Nanopore Technologies sequencing of PCR products, followed by steps of mapping, SNP calling and haplotyping. As a proof of concept, we acquired the sequences of highly similar variants of the cidA and cidB genes present in the genome of the Wolbachia wPip, a bacterium infecting Culex pipiens mosquitoes. Our method relies on a wide database of cid genes, previously acquired by cloning and Sanger sequencing. We addressed problems commonly faced when using mapping approaches for multi-copy gene families with highly similar variants. In addition, we confirmed that PCR amplification causes frequent chimeras which have to be carefully considered when working on families of recombinant genes. We tested the robustness of the method using a combination of bioinformatics (read simulations) and molecular biology approaches (sequence acquisitions through cloning and Sanger sequencing, specific PCRs and digital droplet PCR). When different haplotypes present within a single genome cannot be reconstructed from short reads sequencing, this pipeline confers a high throughput acquisition, gives reliable results as well as insights of the relative copy numbers of the different variants.

4.
J Helminthol ; 96: e2, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34991736

RESUMEN

Natural selection should favour parasite genotypes that manipulate hosts in ways that enhance parasite fitness. However, it is also possible that the effects of infection are not adaptive. Here we experimentally examined the phenotypic effects of infection in a snail-trematode system. These trematodes (Atriophallophorus winterbourni) produce larval cysts within the snail's shell (Potamopyrgus antipodarum); hence the internal shell volume determines the total number of parasite cysts produced. Infected snails in the field tend to be larger than uninfected snails, suggesting the hypothesis that parasites manipulate host growth so as to increase the space available for trematode reproduction. To test the hypothesis, we exposed juvenile snails to trematode eggs. Snails were then left to grow for about one year in 800-l outdoor mesocosms. We found that uninfected males were smaller than uninfected females (sexual dimorphism). We also found that infection did not affect the shell dimensions of males. However, infected females were smaller than uninfected females. Hence, infection stunts the growth of females, and (contrary to the hypothesis) it results in a smaller internal volume for larval cysts. Finally, infected females resembled males in size and shape, suggesting the possibility that parasitic castration prevents the normal development of females. These results thus indicate that the parasite is not manipulating the growth of infected hosts so as to increase the number of larval cysts, although alternative adaptive explanations are possible.


Asunto(s)
Parásitos , Trematodos , Animales , Femenino , Interacciones Huésped-Parásitos , Masculino , Reproducción , Caracoles , Trematodos/genética
5.
Curr Opin Insect Sci ; 49: 78-84, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34954414

RESUMEN

Wolbachia endosymbionts commonly induce cytoplasmic incompatibility, making infected males' sperm lethal to the embryos unless these are rescued by the same bacterium, inherited from their mother. Causal genes were recently identified but two families of mechanistic models are still opposed. In the toxin-antidote model, interaction between the toxin and the antidote is required for rescuing the embryos. In host modification models, a host factor is misregulated in sperm and rescue occurs through compensation or withdrawal of this modification. While these models have been thoroughly discussed, the multiplicity of compatibility types, that is, the existence of many mutually incompatible strains, as seen in Culex mosquitoes, has not received sufficient attention. To explain such a fact, host modification models must posit that the same embryonic defects can be induced and rescued through a large variety of host targets. Conversely, the toxin-antidote model simply accommodates this pattern in a lock-key fashion, through variations in the toxin-antidote interaction sites.


Asunto(s)
Wolbachia , Animales , Antídotos , Genómica , Masculino , Modelos Moleculares , Fenotipo , Wolbachia/genética
6.
Elife ; 102021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34355693

RESUMEN

Monitoring local mosquito populations for insecticide resistance is critical for effective vector-borne disease control. However, widely used phenotypic assays, which are designed to monitor the emergence and spread of insecticide resistance (technical resistance), do not translate well to the efficacy of vector control products to suppress mosquito numbers in the field (practical resistance). This is because standard testing conditions such as environmental conditions, exposure dose, and type of substrate differ dramatically from those experienced by mosquitoes under field conditions. In addition, field mosquitoes have considerably different physiological characteristics such as age and blood-feeding status. Beyond this, indirect impacts of insecticide resistance and/or exposure on mosquito longevity, pathogen development, host-seeking behavior, and blood-feeding success impact disease transmission. Given the limited number of active ingredients currently available and the observed discordance between resistance and disease transmission, we conclude that additional testing guidelines are needed to determine practical resistance-the efficacy of vector control tools under relevant local conditions- in order to obtain programmatic impact.


Asunto(s)
Culicidae , Resistencia a los Insecticidas , Insecticidas , Control de Mosquitos , Mosquitos Vectores , Enfermedades Transmitidas por Vectores/prevención & control , Animales , Guías como Asunto
7.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563818

RESUMEN

In arthropods, Wolbachia endosymbionts induce conditional sterility, called cytoplasmic incompatibility (CI), resulting from embryonic lethality. CI penetrance (i.e., embryonic death rate) varies depending on host species and Wolbachia strains involved. All Culex pipiens mosquitoes are infected by the endosymbiotic alphaproteobacteria Wolbachia wPip. CI in Culex, characterized as a binary "compatible/incompatible" phenomenon, revealed an unparalleled diversity of patterns linked to the amplification-diversification of cidA and cidB genes. Here, we accurately studied CI penetrance variations in the light of cid genes divergence by generating a C. pipiens compatibility matrix between 11 lines hosting different phylogenetic wPip groups and exhibiting distinct cid gene repertoires. We showed, as expected, that crosses involving wPip from the same group were mostly compatible. In contrast, only 22% of the crosses involving different wPip groups were compatible, while 54% were fully incompatible. For the remaining 24% of the crosses, "intermediate" compatibilities were reported, and a cytological observation of the first zygotic division confirmed the occurrence of "canonical" CI phenotypes in a fraction of the eggs. Backcross experiments demonstrated that intermediate compatibilities were not linked to host genetic background but to the Wolbachia strains involved. This previously unstudied intermediate penetrance CI was more severe and frequent in crosses involving wPip-IV strains exhibiting cid variants markedly divergent from other wPip groups. Our data demonstrate that CI is not always a binary compatible/incompatible phenomenon in C. pipiens but that intermediate compatibilities putatively resulting from partial mismatch due to Cid proteins divergence exist in this species complex.IMPORTANCECulex pipiens mosquitoes are infected with wPip. These endosymbionts induce a conditional sterility called CI resulting from embryonic deaths, which constitutes a cornerstone for Wolbachia antivectorial methods. Recent studies revealed that (i) two genes, cidA and cidB, are central in Wolbachia-CI mechanisms, and (ii) compatibility versus incompatibility between mosquito lines depends on the wPip phylogenetic groups at play. Here, we studied CI variations in relation to wPip groups and cid genes divergence. We showed, as expected, that the crosses involving wPip from the same group were compatible. In contrast, 78% of the crosses involving different wPip groups were partially or fully incompatible. In such crosses, we reported defects during the first zygotic division, a hallmark of CI. We showed that CI was more severe and frequent in crosses involving wPip-IV strains exhibiting cid variants, which markedly diverge from those of other wPip groups.


Asunto(s)
Proteína A Centromérica/genética , Culex/microbiología , Citoplasma/fisiología , Citosol/microbiología , Wolbachia/genética , Animales , Línea Celular , Culex/fisiología , Femenino , Flujo Genético , Compuestos Heterocíclicos con 2 Anillos , Especificidad del Huésped , Masculino , Fenotipo , Filogenia , Simbiosis , Tiourea/análogos & derivados
8.
Mol Ecol ; 27(23): 4947-4959, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30372557

RESUMEN

Multiple infections (co-occurrence of multiple pathogen genotypes within an individual host) can have important impacts on diseases. Relatedness among pathogens can affect the likelihood of multiple infections and their consequences through kin selection. Previous studies on the castrating anther-smut fungus Microbotryum lychnidis-dioicae have shown that multiple infections occur in its host plant Silene latifolia. Relatedness was high among fungal genotypes within plants, which could result from competitive exclusion between unrelated fungal genotypes, from population structure or from interactions between plant and fungal genotypes for infection ability. Here, we aimed at disentangling these hypotheses using M. saponariae and its host Saponaria officinalis, both experimentally tractable for these questions. By analysing populations using microsatellite markers, we also found frequent occurrence of multiple infections and high relatedness among strains within host plants. Infections resulting from experimental inoculations in the greenhouse also revealed high relatedness among strains co-infecting host plants, even in clonally replicated plant genotypes, indicating that high relatedness within plants did not result merely from plant x fungus interactions or population structure. Furthermore, hyphal growth in vitro was affected by the presence of a competitor growing nearby and by its genetic similarity, although this latter effect was strain-dependent. Altogether, our results support the hypothesis that relatedness-dependent competitive exclusion occurs in Microbotryum fungi within plants. These microorganisms can thus respond to competitors and to their level of relatedness.


Asunto(s)
Basidiomycota/genética , Basidiomycota/patogenicidad , Enfermedades de las Plantas/microbiología , Saponaria/microbiología , Flores/microbiología , Variación Genética , Genotipo , Repeticiones de Microsatélite , Infertilidad Vegetal , Saponaria/genética , Virulencia
9.
Fungal Genet Biol ; 120: 1-8, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30179667

RESUMEN

Most species able to reproduce both sexually and asexually (facultative sexual species) invest more in sexual reproduction in stressful environment conditions. According to the abandon-ship hypothesis, plasticity for investment in sexual reproduction may have been selected in these species, allowing unfit genotypes to generate progeny carrying new advantageous allelic combinations. We tested this hypothesis in Aspergillus nidulans, a fungus able to reproduce asexually, or sexually, by outcrossing and/or haploid selfing (i.e. fusion of genetically identical haploid nuclei, causing immediate genome-wide homozygosity). We crossed various strains of A. nidulans in a non-stressful environment and a stressful environment containing a non-lethal dose of fungicide. Without stress, crosses preferentially generated haploselfed fruiting bodies, whereas stressful conditions significantly increased the outcrossing rate. Our results strongly support the abandon-ship hypothesis and suggest that, for parents with low fitness, the costs of investing in sexual reproduction may be compensated by the production of fitter progeny carrying beneficial allele combinations. Similarly, the progeny generated by outcrossing was less fit than that produced by haploid selfing in non-stressful environments, but fitter in stressful conditions, suggesting that outcrossing may have short-term advantages in stressful environments in A. nidulans.


Asunto(s)
Aspergillus nidulans/fisiología , Aspergillus nidulans/genética , Cruzamientos Genéticos , Haploidia , Filogenia , Reproducción , Autofecundación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...