Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 25(18): 21471-21482, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-29041445

RESUMEN

Silicon photonics has gained interest for its potential to provide higher efficiency, bandwidth and reduced power consumption compared to electrical interconnects in datacenters and high performance computing environments. However, it is well known that silicon photonic devices suffer from temperature fluctuations due to silicon's high thermo-optic coefficient and therefore, temperature control in many applications is required. Here we present an athermal optical add-drop multiplexer fabricated from ring resonators. We used a sol-gel inorganic-organic hybrid material as an alternative to previously used materials such as polymers and titanium dioxide. In this work we studied the thermal curing parameters of the sol-gel and their effect on thermal wavelength shift of the rings. With this method, we were able to demonstrate a thermal shift down to -6.8 pm/°C for transverse electric (TE) polarization in ring resonators with waveguide widths of 325 nm when the sol-gel was cured at 130°C for 10.5 hours. We also achieved thermal shifts below 1 pm/°C for transverse magnetic (TM) polarization in the C band under different curing conditions. Curing time compared to curing temperature shows to be the most important factor to control sol-gel's thermo-optic value in order to obtain an athermal device in a wide temperature range.

2.
Opt Express ; 25(15): 17960-17970, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28789284

RESUMEN

We report a fabrication process of a polymer, and mirror-based out-of-plane optical coupler. In the process, a pre-formed mirror blank made of a buffer coat material is re-exposed by a laser direct writing tool with low numerical aperture of 0.1. The fabrication process is inherently fast because of the low numerical aperture (NA) process. The surface figure of the mirror is controlled under 0.04 waves in root-mean-square (RMS) at 1.55 µm wavelength, with mirror angle of 45 ± 1 degrees. Nominal insertion loss of 8.5dB of the mirror-based coupler was confirmed with polymer waveguides fabricated simultaneously.

3.
ACS Macro Lett ; 6(5): 500-504, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35610885

RESUMEN

We report on the preparation of ultrahigh refractive index polymers via the inverse vulcanization of elemental sulfur, selenium, and 1,3-diisopropenylbenzene for use as novel transmissive materials for mid-infrared (IR) imaging applications. Poly(sulfur-random-selenium-random-(1,3-diisopropenylbenzene)) (poly(S-r-Se-r-DIB) terpolymer materials from this process exhibit the highest refractive index of any synthetic polymer (n > 2.0) and excellent IR transparency, which can be directly tuned by terpolymer composition. Sulfur or selenium containing (co)polymers prepared via inverse vulcanization can be described as Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) and are polymeric analogues to wholly inorganic Chalcogenide Glasses (ChGs), which are commonly used as transmissive materials in mid-IR imaging. Finally, we demonstrate that CHIPs composed of (poly(S-r-Se-r-DIB) can be melt processed into windows that enabled high quality mid-IR thermal imaging of human subjects and highly resolved imaging of human vasculature.

4.
ACS Macro Lett ; 5(10): 1152-1156, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35658175

RESUMEN

The synthesis of a novel high sulfur content material possessing improved thermomechanical properties is reported via the inverse vulcanization of elemental sulfur (S8) and 1,3,5-triisopropenylbenzene (TIB). A key feature of this system was the ability to afford highly cross-linked, thermosetting materials, where the use of TIB as a comonomer enabled facile control of the network structure and dramatically improved the glass transition temperature (relative to our earlier sulfur copolymers) of poly(sulfur-random-(1,3,5-triisopropenylbenzene)) (poly(S-r-TIB)) materials over a range from T = 68 to 130 °C. This approach allowed for the incorporation of a high content of sulfur-sulfur (S-S) units in the copolymer that enabled thermomechanical scission of these dynamic covalent bonds and thermal reprocessing of the material, which we confirmed via dynamic rheological characterization. Furthermore, the high sulfur content also imparted high refractive index (n > 1.75) and IR transparency to poly(S-r-TIB) copolymers, which offered a route to enhanced optical transmitting materials for IR thermal imaging applications with improved thermomechanical properties.

5.
ACS Macro Lett ; 4(9): 862-866, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35596448

RESUMEN

We report on dynamic covalent polymers derived from elemental sulfur that can be used as thermally healable optical polymers for mid-IR thermal imaging applications. By accessing dynamic S-S bonds in these sulfur copolymers, surface scratches and defects of free-standing films of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r-DIB) can be thermally healed, which enables damaged lenses and windows from these materials to be reprocessed to recover their IR imaging performance. Correlation of the mechanical properties of these sulfur copolymers with different curing methods provided insights to reprocess damaged samples of these materials. Mid-IR thermal imaging experiments with windows before and after healing of surface defects demonstrated successful application of these materials to create a new class of "scratch and heal" optical polymers. The use of dynamic covalent polymers as healable materials for IR applications offers a unique advantage over the current state of the art (e.g., germanium or chalcogenide glasses) due to both the dynamic character and useful optical properties of S-S bonds.

6.
Adv Mater ; 26(19): 3014-8, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24659231

RESUMEN

Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 µm) and mid-IR (3-5 µm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated.


Asunto(s)
Polímeros/química , Azufre/química , Humanos , Rayos Infrarrojos , Refractometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA