Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Redox Biol ; 47: 102142, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34598017

RESUMEN

To determine the roles of nuclear localization of pro-caspase-1 in human aortic endothelial cells (HAECs) activated by proatherogenic lipid lysophosphatidylcholine (LPC), we examined cytosolic and nuclear localization of pro-caspase-1, identified nuclear export signal (NES) in pro-caspase-1 and sequenced RNAs. We made the following findings: 1) LPC increases nuclear localization of procaspase-1 in HAECs. 2) Nuclear pro-caspase-1 exports back to the cytosol, which is facilitated by a leptomycin B-inhibited mechanism. 3) Increased nuclear localization of pro-caspase-1 by a new NES peptide inhibitor upregulates inflammatory genes in oxidative stress and Th17 pathways; and SUMO activator N106 enhances nuclear localization of pro-caspase-1 and caspase-1 activation (p20) in the nucleus. 4) LPC plus caspase-1 enzymatic inhibitor upregulates inflammatory genes with hypercytokinemia/hyperchemokinemia and interferon pathways, suggesting a novel capsase-1 enzyme-independent inflammatory mechanism. 5) LPC in combination with NES inhibitor and caspase-1 inhibitor upregulate inflammatory gene expression that regulate Th17 activation, endotheli-1 signaling, p38-, and ERK- MAPK pathways. To examine two hallmarks of endothelial activation such as secretomes and membrane protein signaling, LPC plus NES inhibitor upregulate 57 canonical secretomic genes and 76 exosome secretomic genes, respectively, promoting four pathways including Th17, IL-17 promoted cytokines, interferon signaling and cholesterol biosynthesis. LPC with NES inhibitor also promote inflammation via upregulating ROS promoter CYP1B1 and 11 clusters of differentiation (CD) membrane protein pathways. Mechanistically, all the LPC plus NES inhibitor-induced genes are significantly downregulated in CYP1B1-deficient microarray, suggesting that nuclear caspase-1-induced CYP1B1 promotes strong inflammation. These transcriptomic results provide novel insights on the roles of nuclear caspase-1 in sensing DAMPs, inducing ROS promoter CYP1B1 and in regulating a large number of genes that mediate HAEC activation and inflammation. These findings will lead to future development of novel therapeutics for cardiovascular diseases (CVD), inflammations, infections, transplantation, autoimmune disease and cancers. (total words: 284).


Asunto(s)
Células Endoteliales , Lisofosfatidilcolinas , Aorta , Caspasa 1/genética , Citocromo P-450 CYP1B1 , Humanos , Inflamación/genética , Especies Reactivas de Oxígeno
3.
Pathogens ; 9(11)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114395

RESUMEN

Ischemia reperfusion injury (IRI) during liver transplantation increases morbidity and contributes to allograft dysfunction. There are no therapeutic strategies to mitigate IRI. We examined a novel hypothesis: caspase 1 and caspase 11 serve as danger-associated molecular pattern (DAMPs) sensors in IRI. By performing microarray analysis and using caspase 1/caspase 11 double-knockout (Casp DKO) mice, we show that the canonical and non-canonical inflammasome regulators are upregulated in mouse liver IRI. Ischemic pre (IPC)- and post-conditioning (IPO) induce upregulation of the canonical and non-canonical inflammasome regulators. Trained immunity (TI) regulators are upregulated in IPC and IPO. Furthermore, caspase 1 is activated during liver IRI, and Casp DKO attenuates liver IRI. Casp DKO maintained normal liver histology via decreased DNA damage. Finally, the decreased TUNEL assay-detected DNA damage is the underlying histopathological and molecular mechanisms of attenuated liver pyroptosis and IRI. In summary, liver IRI induces the upregulation of canonical and non-canonical inflammasomes and TI enzyme pathways. Casp DKO attenuate liver IRI. Development of novel therapeutics targeting caspase 1/caspase 11 and TI may help mitigate injury secondary to IRI. Our findings have provided novel insights on the roles of caspase 1, caspase 11, and inflammasome in sensing IRI derived DAMPs and TI-promoted IRI-induced liver injury.

4.
Front Immunol ; 11: 619951, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488632

RESUMEN

Metabolically healthy obesity (MHO) accounts for roughly 35% of all obese patients. There is no clear consensus that has been reached on whether MHO is a stable condition or merely a transitory period between metabolically healthy lean and metabolically unhealthy obesity (MUO). Additionally, the mechanisms underlying MHO and any transition to MUO are not clear. Macrophages are the most common immune cells in adipose tissues and have a significant presence in atherosclerosis. Fas (or CD95), which is highly expressed on macrophages, is classically recognized as a pro-apoptotic cell surface receptor. However, Fas also plays a significant role as a pro-inflammatory molecule. Previously, we established a mouse model (ApoE-/-/miR155-/-; DKO mouse) of MHO, based on the criteria of not having metabolic syndrome (MetS) and insulin resistance (IR). In our current study, we hypothesized that MHO is a transition phase toward MUO, and that inflammation driven by our newly classified CD95+CD86- macrophages is a novel mechanism for this transition. We found that, with extended (24 weeks) high-fat diet feeding (HFD), MHO mice became MUO, shown by increased atherosclerosis. Mechanistically, we found the following: 1) at the MHO stage, DKO mice exhibited increased pro-inflammatory markers in adipose tissue, including CD95, and serum; 2) total adipose tissue macrophages (ATMs) increased; 3) CD95+CD86- subset of ATMs also increased; and 4) human aortic endothelial cells (HAECs) were activated (as determined by upregulated ICAM1 expression) when incubated with conditioned media from CD95+-containing DKO ATMs and human peripheral blood mononuclear cells-derived macrophages in comparison to respective controls. These results suggest that extended HFD in MHO mice promotes vascular inflammation and atherosclerosis via increasing CD95+ pro-inflammatory ATMs. In conclusion, we have identified a novel molecular mechanism underlying MHO transition to MUO with HFD. We have also found a previously unappreciated role of CD95+ macrophages as a potentially novel subset that may be utilized to assess pro-inflammatory characteristics of macrophages, specifically in adipose tissue in the absence of pro-inflammatory miR-155. These findings have provided novel insights on MHO transition to MUO and new therapeutic targets for the future treatment of MUO, MetS, other obese diseases, and type II diabetes.


Asunto(s)
Inflamación/inmunología , Macrófagos/fisiología , MicroARNs/fisiología , Obesidad Metabólica Benigna/inmunología , Receptor fas/análisis , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Animales , Aorta , Enfermedades de la Aorta/etiología , Aterosclerosis/etiología , Antígeno B7-2/análisis , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Dieta Alta en Grasa/efectos adversos , Progresión de la Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Femenino , Humanos , Inflamación/complicaciones , Molécula 1 de Adhesión Intercelular/biosíntesis , Macrófagos/química , Macrófagos/clasificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Obesidad Metabólica Benigna/metabolismo , Obesidad Metabólica Benigna/patología , Vasculitis/etiología
5.
Front Immunol ; 10: 2612, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824480

RESUMEN

The mechanisms underlying pathophysiological regulation of tissue macrophage (Mφ) subsets remain poorly understood. From the expression of 207 Mφ genes comprising 31 markers for 10 subsets, 45 transcription factors (TFs), 56 immunometabolism enzymes, 23 trained immunity (innate immune memory) enzymes, and 52 other genes in microarray data, we made the following findings. (1) When 34 inflammation diseases and tumor types were grouped into eight categories, there was differential expression of the 31 Mφ markers and 45 Mφ TFs, highlighted by 12 shared and 20 group-specific disease pathways. (2) Mφ in lung, liver, spleen, and intestine (LLSI-Mφ) express higher M1 Mφ markers than lean adipose tissue Mφ (ATMφ) physiologically. (3) Pro-adipogenic TFs C/EBPα and PPARγ and proinflammatory adipokine leptin upregulate the expression of M1 Mφ markers. (4) Among 10 immune checkpoint receptors (ICRs), LLSI-Mφ and bone marrow (BM) Mφ express higher levels of CD274 (PDL-1) than ATMφ, presumably to counteract the M1 dominant status via its reverse signaling behavior. (5) Among 24 intercellular communication exosome mediators, LLSI- and BM- Mφ prefer to use RAB27A and STX3 than RAB31 and YKT6, suggesting new inflammatory exosome mediators for propagating inflammation. (6) Mφ in peritoneal tissue and LLSI-Mφ upregulate higher levels of immunometabolism enzymes than does ATMφ. (7) Mφ from peritoneum and LLSI-Mφ upregulate more trained immunity enzyme genes than does ATMφ. Our results suggest that multiple new mechanisms including the cell surface, intracellular immunometabolism, trained immunity, and TFs may be responsible for disease group-specific and shared pathways. Our findings have provided novel insights on the pathophysiological regulation of tissue Mφ, the disease group-specific and shared pathways of Mφ, and novel therapeutic targets for cancers and inflammations.


Asunto(s)
Inflamación/inmunología , Macrófagos/inmunología , Neoplasias/inmunología , Transducción de Señal/inmunología , Minería de Datos/métodos , Humanos
6.
Front Oncol ; 9: 600, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31355136

RESUMEN

Background: The mechanisms underlying low intensity ultrasound (LIUS) mediated suppression of inflammation and tumorigenesis remain poorly determined. Methods: We used microarray datasets from NCBI GEO Dataset databases and conducted a comprehensive data mining analyses, where we studied the gene expression of 299 cell death regulators that regulate 13 different cell death types (cell death regulatome) in cells treated with LIUS. Results: We made the following findings: (1) LIUS exerts a profound effect on the expression of cell death regulatome in cancer cells and non-cancer cells. Of note, LIUS has the tendency to downregulate the gene expression of cell death regulators in non-cancer cells. Most of the cell death regulator genes downregulated by LIUS in non-cancer cells are responsible for mediating inflammatory signaling pathways; (2) LIUS activates different cell death transcription factors in cancer and non-cancer cells. Transcription factors TP-53 and SRF- were induced by LIUS exposure in cancer cells and non-cancer cells, respectively; (3) As two well-accepted mechanisms of LIUS, mild hyperthermia and oscillatory shear stress induce changes in the expression of cell death regulators, therefore, may be responsible for inducing LIUS mediated changes in gene expression patterns of cell death regulators in cells; (4) LIUS exposure may change the redox status of the cells. LIUS may induce more of antioxidant effects in non-cancer cells compared to cancer cells; and (5) The genes modulated by LIUS in cancer cells have distinct chromatin long range interaction (CLRI) patterns to that of non-cancer cells. Conclusions: Our analysis suggests novel molecular mechanisms that may be utilized by LIUS to induce tumor suppression and inflammation inhibition. Our findings may lead to development of new treatment protocols for cancers and chronic inflammation.

7.
Redox Biol ; 24: 101221, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31153039

RESUMEN

To test our hypothesis that proatherogenic lysophosphatidylcholine (LPC) upregulates trained immunity pathways (TIPs) in human aortic endothelial cells (HAECs), we conducted an intensive analyses on our RNA-Seq data and histone 3 lysine 14 acetylation (H3K14ac)-CHIP-Seq data, both performed on HAEC treated with LPC. Our analysis revealed that: 1) LPC induces upregulation of three TIPs including glycolysis enzymes (GE), mevalonate enzymes (ME), and acetyl-CoA generating enzymes (ACE); 2) LPC induces upregulation of 29% of 31 histone acetyltransferases, three of which acetylate H3K14; 3) LPC induces H3K14 acetylation (H3K14ac) in the genomic DNA that encodes LPC-induced TIP genes (79%) in comparison to that of in LPC-induced effector genes (43%) including ICAM-1; 4) TIP pathways are significantly different from that of EC activation effectors including adhesion molecule ICAM-1; 5) reactive oxygen species generating enzyme NOX2 deficiency decreases, but antioxidant transcription factor Nrf2 deficiency increases, the expressions of a few TIP genes and EC activation effector genes; and 6) LPC induced TIP genes(81%) favor inter-chromosomal long-range interactions (CLRI, trans-chromatin interaction) while LPC induced effector genes (65%) favor intra-chromosomal CLRIs (cis-chromatin interaction). Our findings demonstrated that proatherogenic lipids upregulate TIPs in HAECs, which are a new category of qualification markers for chronic disease risk factors and conditional DAMPs and potential mechanisms for acute inflammation transition to chronic ones. These novel insights may lead to identifications of new cardiovascular risk factors in upregulating TIPs in cardiovascular cells and novel therapeutic targets for the treatment of metabolic cardiovascular diseases, inflammation, and cancers. (total words: 245).


Asunto(s)
Inmunidad Adaptativa , Aorta/metabolismo , Susceptibilidad a Enfermedades , Células Endoteliales/metabolismo , Histonas/metabolismo , Lisofosfatidilcolinas/metabolismo , Acetilación , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores , Enfermedad Crónica , Regulación de la Expresión Génica , Genes Esenciales , Humanos , Redes y Vías Metabólicas , Modelos Biológicos , Factores de Riesgo , Transducción de Señal
8.
Front Biosci (Landmark Ed) ; 24(1): 96-132, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30468648

RESUMEN

We took an experimental database mining analysis to determine the expression of 28 co-signaling receptors in 32 human tissues in physiological/pathological conditions. We made the following significant findings: 1) co-signaling receptors are differentially expressed in tissues; 2) heart, trachea, kidney, mammary gland and muscle express co-signaling receptors that mediate CD4+T cell functions such as priming, differentiation, effector, and memory; 3) urinary tumor, germ cell tumor, leukemia and chondrosarcoma express high levels of co-signaling receptors for T cell activation; 4) expression of inflammasome components are correlated with the expression of co-signaling receptors; 5) CD40, SLAM, CD80 are differentially expressed in leukocytes from patients with trauma, bacterial infections, polarized macrophages and in activated endothelial cells; 6) forward and reverse signaling of 50% co-inhibition receptors are upregulated in endothelial cells during inflammation; and 7) STAT1 deficiency in T cells upregulates MHC class II and co-stimulation receptors. Our results have provided novel insights into co-signaling receptors as physiological regulators and potentiate identification of new therapeutic targets for the treatment of sterile inflammatory disorders.


Asunto(s)
Tolerancia Inmunológica/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígeno B7-1/genética , Antígeno B7-1/inmunología , Antígenos CD40/genética , Antígenos CD40/inmunología , Diferenciación Celular/genética , Expresión Génica/inmunología , Perfilación de la Expresión Génica , Humanos , Tolerancia Inmunológica/genética , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Transducción de Señal/genética , Linfocitos T/metabolismo
9.
Arch Biochem Biophys ; 662: 68-74, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30521782

RESUMEN

Mitochondria are capable of detecting cellular insults and orchestrating inflammatory responses. Mitochondrial reactive oxygen species (mtROS) are intermediates that trigger inflammatory signaling cascades in response to our newly proposed conditional damage associated molecular patterns (DAMP). We recently reported that increased proton leak regulates mtROS generation and thereby exert physiological and pathological activation of endothelial cells. Herein, we report the recent progress in determining the roles of proton leak in regulating mtROS, and highlight several important findings: 1) The majority of mtROS are generated in the complexes I and III of electron transport chain (ETC); 2) Inducible proton leak and mtROS production are mutually regulated; 3) ATP synthase-uncoupled ETC activity and mtROS regulate both physiological and pathological endothelial cell activation and inflammation initiation; 4) Mitochondrial Ca2+ uniporter and exchanger proteins have an impact on proton leak and mtROS generation; 5) MtROS connect signaling pathways between conditional DAMP-regulated immunometabolism and histone post-translational modifications (PTM) and gene expression. Continuous improvement of our understanding in this aspect of mitochondrial function would provide novel insights and generate novel therapeutic targets for the treatment of sterile inflammatory disorders such as metabolic diseases, cardiovascular diseases and cancers.


Asunto(s)
Inflamación/metabolismo , Mitocondrias/metabolismo , Protones , Especies Reactivas de Oxígeno/metabolismo , Transporte de Electrón , Células Endoteliales/metabolismo , Mitocondrias/enzimología , Procesamiento Proteico-Postraduccional , Transducción de Señal
10.
Front Physiol ; 9: 516, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867559

RESUMEN

Under inflammatory conditions, inflammatory cells release reactive oxygen species (ROS) and reactive nitrogen species (RNS) which cause DNA damage. If not appropriately repaired, DNA damage leads to gene mutations and genomic instability. DNA damage checkpoint factors (DDCF) and DNA damage repair factors (DDRF) play a vital role in maintaining genomic integrity. However, how DDCFs and DDRFs are modulated under physiological and pathological conditions are not fully known. We took an experimental database analysis to determine the expression of 26 DNA DDCFs and 42 DNA DDRFs in 21 human and 20 mouse tissues in physiological/pathological conditions. We made the following significant findings: (1) Few DDCFs and DDRFs are ubiquitously expressed in tissues while many are differentially regulated.; (2) the expression of DDCFs and DDRFs are modulated not only in cancers but also in sterile inflammatory disorders and metabolic diseases; (3) tissue methylation status, pro-inflammatory cytokines, hypoxia regulating factors and tissue angiogenic potential can determine the expression of DDCFs and DDRFs; (4) intracellular organelles can transmit the stress signals to the nucleus, which may modulate the cell death by regulating the DDCF and DDRF expression. Our results shows that sterile inflammatory disorders and cancers increase genomic instability, therefore can be classified as pathologies with a high genomic risk. We also propose a new concept that as parts of cellular sensor cross-talking network, DNA checkpoint and repair factors serve as nuclear sensors for intracellular organelle stresses. Further, this work would lead to identification of novel therapeutic targets and new biomarkers for diagnosis and prognosis of metabolic diseases, inflammation, tissue damage and cancers.

11.
Front Immunol ; 9: 45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434588

RESUMEN

We conducted an experimental database analysis to determine the expression of 61 CD4+ Th subset regulators in human and murine tissues, cells, and in T-regulatory cells (Treg) in physiological and pathological conditions. We made the following significant findings: (1) adipose tissues of diabetic patients with insulin resistance upregulated various Th effector subset regulators; (2) in skin biopsy from patients with psoriasis, and in blood cells from patients with lupus, effector Th subset regulators were more upregulated than downregulated; (3) in rosiglitazone induced failing hearts in ApoE-deficient (KO) mice, various Th subset regulators were upregulated rather than downregulated; (4) aortic endothelial cells activated by proatherogenic stimuli secrete several Th subset-promoting cytokines; (5) in Treg from follicular Th (Tfh)-transcription factor (TF) Bcl6 KO mice, various Th subset regulators were upregulated; whereas in Treg from Th2-TF GATA3 KO mice and HDAC6 KO mice, various Th subset regulators were downregulated, suggesting that Bcl6 inhibits, GATA3 and HDAC6 promote, Treg plasticity; and (6) GATA3 KO, and Bcl6 KO Treg upregulated MHC II molecules and T cell co-stimulation receptors, suggesting that GATA3 and BCL6 inhibit Treg from becoming novel APC-Treg. Our data implies that while HDAC6 and Bcl6 are important regulators of Treg plasticity, GATA3 determine the fate of plastic Tregby controlling whether it will convert in to either Th1-Treg or APC-T-reg. Our results have provided novel insights on Treg plasticity into APC-Treg and Th1-Treg, and new therapeutic targets in metabolic diseases, autoimmune diseases, and inflammatory disorders.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Plasticidad de la Célula/inmunología , Factor de Transcripción GATA3/metabolismo , Histona Desacetilasa 6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Linfocitos T Reguladores/inmunología , Células TH1/inmunología , Animales , Células Presentadoras de Antígenos/citología , Aorta/citología , Aorta/metabolismo , Células Endoteliales/metabolismo , Factor de Transcripción GATA3/genética , Histona Desacetilasa 6/genética , Humanos , Resistencia a la Insulina/inmunología , Lupus Eritematoso Sistémico/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados para ApoE , Proteínas Proto-Oncogénicas c-bcl-6/genética , Psoriasis/inmunología , Rosiglitazona/toxicidad , Linfocitos T Reguladores/citología , Células TH1/citología
12.
Antioxid Redox Signal ; 28(10): 973-986, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-28325059

RESUMEN

Significance: We proposed lysophospholipids (LPLs) and LPL-G-protein-coupled receptors (GPCRs) as conditional danger-associated molecular patterns (DAMPs) and conditional DAMP receptors as a paradigm shift to the widely accepted classical DAMP and DAMP receptor model. Recent Advances: The aberrant levels of LPLs and GPCRs activate pro-inflammatory signal transduction pathways, trigger innate immune response, and lead to tissue oxidative and inflammatory injury. Critical Issues: Classical DAMP model specifies only the endogenous metabolites that are released from damaged/dying cells as DAMPs, but fails to identify elevated endogenous metabolites secreted from viable/live cells during pathologies as DAMPs. The current classification of DAMPs also fails to clarify the following concerns: (i) Are molecules, which bind to pattern recognition receptors (PRRs), the only DAMPs contributing to inflammation and tissue injury? (ii) Are all DAMPs acting only via classical PRRs during cellular stress? To answer these questions, we reviewed the molecular characteristics and signaling mechanisms of LPLs, a group of endogenous metabolites and their specific receptors and analyzed the significant progress achieved in characterizing oxidative stress mechanisms of LPL mediated tissue injury. Future Directions: Further LPLs and LPL-GPCRs may serve as potential therapeutic targets for the treatment of pathologies induced by sterile inflammation. Antioxid. Redox Signal. 28, 973-986.

13.
Front Biosci (Landmark Ed) ; 23(2): 348-387, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28930551

RESUMEN

We mined novel uremic toxin (UT) metabolomics/gene databases, and analyzed the expression changes of UT receptors and UT synthases in chronic kidney disease (CKD) and cardiovascular disease (CVD). We made the following observations: 1) UTs represent only 1/80th of human serum small-molecule metabolome; 2) Some UTs are increased in CKD and CVD; 3) UTs either induce or suppress the expression of inflammatory molecules; 4) The expression of UT genes is significantly modulated in CKD patients, and coronary artery disease (CAD) patients; 5) The expression of UT genes is upregulated by caspase-1 and TNF-alpha pathways but is inhibited in regulatory T cells. These results demonstrate that UTs are selectively increased, and serve as danger signal-associated molecular patterns (DAMPs) and homeostasis-associated molecular patterns (HAMPs) that modulate inflammation. These results also show that some UT genes are upregulated in CKD and CAD via caspase-1/inflammatory cytokine pathways, rather than by purely passive accumulation.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Homeostasis , Toxinas Biológicas/metabolismo , Uremia/metabolismo , Alarminas/genética , Alarminas/metabolismo , Enfermedades Cardiovasculares/genética , Caspasa 1/genética , Caspasa 1/metabolismo , Citocinas/genética , Citocinas/metabolismo , Perfilación de la Expresión Génica/métodos , Humanos , Mediadores de Inflamación/metabolismo , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal/genética , Toxinas Biológicas/genética , Uremia/genética
14.
Front Physiol ; 8: 818, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29109687

RESUMEN

Background: Low-intensity ultrasound (LIUS) was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders. Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS. Results: Our data revealed following interesting findings: (1) LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2) LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells), MSCs (mesenchymal stem cells), B1-B cells and Treg (regulatory T cells); (3) LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4) LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5) Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6) LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways. Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.

15.
J Hematol Oncol ; 10(1): 168, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29065888

RESUMEN

BACKGROUND: Nuclear receptors (NRs) can regulate gene expression; therefore, they are classified as transcription factors. Despite the extensive research carried out on NRs, still several issues including (1) the expression profile of NRs in human tissues, (2) how the NR expression is modulated during atherosclerosis and metabolic diseases, and (3) the overview of the role of NRs in inflammatory conditions are not fully understood. METHODS: To determine whether and how the expression of NRs are regulated in physiological/pathological conditions, we took an experimental database analysis to determine expression of all 48 known NRs in 21 human and 17 murine tissues as well as in pathological conditions. RESULTS: We made the following significant findings: (1) NRs are differentially expressed in tissues, which may be under regulation by oxygen sensors, angiogenesis pathway, stem cell master regulators, inflammasomes, and tissue hypo-/hypermethylation indexes; (2) NR sequence mutations are associated with increased risks for development of cancers and metabolic, cardiovascular, and autoimmune diseases; (3) NRs have less tendency to be upregulated than downregulated in cancers, and autoimmune and metabolic diseases, which may be regulated by inflammation pathways and mitochondrial energy enzymes; and (4) the innate immune sensor inflammasome/caspase-1 pathway regulates the expression of most NRs. CONCLUSIONS: Based on our findings, we propose a new paradigm that most nuclear receptors are anti-inflammatory homeostasis-associated molecular pattern receptors (HAMPRs). Our results have provided a novel insight on NRs as therapeutic targets in metabolic diseases, inflammations, and malignancies.


Asunto(s)
Minería de Datos/métodos , Receptores Citoplasmáticos y Nucleares/metabolismo , Homeostasis , Humanos , Receptores Citoplasmáticos y Nucleares/análisis
16.
Adv Exp Med Biol ; 982: 359-370, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28551798

RESUMEN

Mitochondrial proton leak is the principal mechanism that incompletely couples substrate oxygen to ATP generation. This chapter briefly addresses the recent progress made in understanding the role of proton leak in the pathogenesis of cardiovascular diseases. Majority of the proton conductance is mediated by uncoupling proteins (UCPs) located in the mitochondrial inner membrane. It is evident that the proton leak and reactive oxygen species (ROS) generated from electron transport chain (ETC) in mitochondria are linked to each other. Increased ROS production has been shown to induce proton conductance, and in return, increased proton conductance suppresses ROS production, suggesting the existence of a positive feedback loop that protects the biological systems from detrimental effects of augmented oxidative stress. There is mounting evidence attributing to proton leak and uncoupling proteins a crucial role in the pathogenesis of cardiovascular disease. We can surmise the role of "uncoupling" in cardiovascular disorders as follows; First, the magnitude of the proton leak and the mechanism involved in mediating the proton leak determine whether there is a protective effect against ischemia-reperfusion (IR) injury. Second, uncoupling by UCP2 preserves vascular function in diet-induced obese mice as well as in diabetes. Third, etiology determines whether the proton conductance is altered or not during hypertension. And fourth, proton leak regulates ATP synthesis-uncoupled mitochondrial ROS generation, which determines pathological activation of endothelial cells for recruitment of inflammatory cells. Continue effort in improving our understanding in the role of proton leak in the pathogenesis of cardiovascular and metabolic diseases would lead to identification of novel therapeutic targets for treatment.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Metabolismo Energético , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Adenosina Trifosfato/metabolismo , Animales , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/fisiopatología , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Estrés Oxidativo , Protones , Especies Reactivas de Oxígeno/metabolismo
17.
J Hematol Oncol ; 10(1): 40, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28153032

RESUMEN

BACKGROUND: It is well established that caspase-1 exerts its biological activities through its downstream targets such as IL-1ß, IL-18, and Sirt-1. The microarray datasets derived from various caspase-1 knockout tissues indicated that caspase-1 can significantly impact the transcriptome. However, it is not known whether all the effects exerted by caspase-1 on transcriptome are mediated only by its well-known substrates. Therefore, we hypothesized that the effects of caspase-1 on transcriptome may be partially independent from IL-1ß, IL-18, and Sirt-1. METHODS: To determine new global and tissue-specific gene regulatory effects of caspase-1, we took novel microarray data analysis approaches including Venn analysis, cooperation analysis, and meta-analysis methods. We used these statistical methods to integrate different microarray datasets conducted on different caspase-1 knockout tissues and datasets where caspase-1 downstream targets were manipulated. RESULTS: We made the following important findings: (1) Caspase-1 exerts its regulatory effects on the majority of genes in a tissue-specific manner; (2) Caspase-1 regulatory genes partially cooperates with genes regulated by sirtuin-1 during organ injury and inflammation in adipose tissue but not in the liver; (3) Caspase-1 cooperates with IL-1ß in regulating less than half of the genes involved in cardiovascular disease, organismal injury, and cancer in mouse liver; (4) The meta-analysis identifies 40 caspase-1 globally regulated genes across tissues, suggesting that caspase-1 globally regulates many novel pathways; and (5) The meta-analysis identified new cooperatively and non-cooperatively regulated genes in caspase-1, IL-1ß, IL-18, and Sirt-1 pathways. CONCLUSIONS: Our findings suggest that caspase-1 regulates many new signaling pathways potentially via its known substrates and also via transcription factors and other proteins that are yet to be identified.


Asunto(s)
Caspasa 1/fisiología , Regulación de la Expresión Génica , Transducción de Señal , Transcriptoma , Tejido Adiposo/metabolismo , Animales , Aorta/metabolismo , Conjuntos de Datos como Asunto , Metabolismo Energético/genética , Inflamación/genética , Interleucina-18 , Interleucina-1beta , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados para ApoE , Especificidad de Órganos , Sirtuina 1 , Análisis de Matrices Tisulares
18.
J Hematol Oncol ; 9(1): 122, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27842563

RESUMEN

BACKGROUND: Caspase-1 is present in the cytosol as an inactive zymogen and requires the protein complexes named "inflammasomes" for proteolytic activation. However, it remains unclear whether the proteolytic activity of caspase-1 is confined only to the cytosol where inflammasomes are assembled to convert inactive pro-caspase-1 to active caspase-1. METHODS: We conducted meticulous data analysis methods on proteomic, protein interaction, protein intracellular localization, and gene expressions of 114 experimentally identified caspase-1 substrates and 38 caspase-1 interaction proteins in normal physiological conditions and in various pathologies. RESULTS: We made the following important findings: (1) Caspase-1 substrates and interaction proteins are localized in various intracellular organelles including nucleus and secreted extracellularly; (2) Caspase-1 may get activated in situ in the nucleus in response to intra-nuclear danger signals; (3) Caspase-1 cleaves its substrates in exocytotic secretory pathways including exosomes to propagate inflammation to neighboring and remote cells; (4) Most of caspase-1 substrates are upregulated in coronary artery disease regardless of their subcellular localization but the majority of metabolic diseases cause no significant expression changes in caspase-1 nuclear substrates; and (5) In coronary artery disease, majority of upregulated caspase-1 extracellular substrate-related pathways are involved in induction of inflammation; and in contrast, upregulated caspase-1 nuclear substrate-related pathways are more involved in regulating cell death and chromatin regulation. CONCLUSIONS: Our identification of novel caspase-1 trafficking sites, nuclear and extracellular inflammasomes, and extracellular caspase-1-based inflammation propagation model provides a list of targets for the future development of new therapeutics to treat cardiovascular diseases, inflammatory diseases, and inflammatory cancers.


Asunto(s)
Caspasa 1/metabolismo , Minería de Datos/métodos , Regulación de la Expresión Génica , Inflamasomas/fisiología , Inflamación , Animales , Caspasa 1/fisiología , Muerte Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Enfermedad de la Arteria Coronaria/patología , Humanos , Orgánulos/metabolismo
19.
J Cardiovasc Transl Res ; 9(4): 343-59, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27230673

RESUMEN

There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.


Asunto(s)
Inflamación/metabolismo , Lisofosfolípidos/metabolismo , Receptores Lisofosfolípidos/metabolismo , Transducción de Señal , Animales , Biología Computacional , Minería de Datos , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Homeostasis , Humanos , Inflamación/inmunología , Lisofosfolípidos/inmunología , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Receptores Lisofosfolípidos/genética , Receptores Lisofosfolípidos/inmunología
20.
Arterioscler Thromb Vasc Biol ; 36(6): 1090-100, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27127201

RESUMEN

OBJECTIVE: Hyperlipidemia-induced endothelial cell (EC) activation is considered as an initial event responsible for monocyte recruitment in atherogenesis. However, it remains poorly defined what is the mechanism underlying hyperlipidemia-induced EC activation. Here, we tested a novel hypothesis that mitochondrial reactive oxygen species (mtROS) serve as signaling mediators for EC activation in early atherosclerosis. APPROACH AND RESULTS: Metabolomics and transcriptomics analyses revealed that several lysophosphatidylcholine (LPC) species, such as 16:0, 18:0, and 18:1, and their processing enzymes, including Pla2g7 and Pla2g4c, were significantly induced in the aortas of apolipoprotein E knockout mice during early atherosclerosis. Using electron spin resonance and flow cytometry, we found that LPC 16:0, 18:0, and 18:1 induced mtROS in primary human aortic ECs, independently of the activities of nicotinamide adenine dinucleotide phosphate oxidase. Mechanistically, using confocal microscopy and Seahorse XF mitochondrial analyzer, we showed that LPC induced mtROS via unique calcium entry-mediated increase of proton leak and mitochondrial O2 reduction. In addition, we found that mtROS contributed to LPC-induced EC activation by regulating nuclear binding of activator protein-1 and inducing intercellular adhesion molecule-1 gene expression in vitro. Furthermore, we showed that mtROS inhibitor MitoTEMPO suppressed EC activation and aortic monocyte recruitment in apolipoprotein E knockout mice using intravital microscopy and flow cytometry methods. CONCLUSIONS: ATP synthesis-uncoupled, but proton leak-coupled, mtROS increase mediates LPC-induced EC activation during early atherosclerosis. These results indicate that mitochondrial antioxidants are promising therapies for vascular inflammation and cardiovascular diseases.


Asunto(s)
Aorta/metabolismo , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Lisofosfatidilcolinas/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/farmacología , Aorta/efectos de los fármacos , Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/patología , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Lisofosfatidilcolinas/farmacología , Potencial de la Membrana Mitocondrial , Metabolómica/métodos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fenotipo , Factores de Tiempo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...