Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Plants ; 9(12): 1958-1961, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38052952

RESUMEN

Which option for regulating plants derived from new genomic techniques in European Union law is feasible and justifiable scientifically? The European Commission has proposed a new regulation on plants obtained by specific new genomic techniques, which is now subject to discussion in the legislative process. From the perspective of the European Commission's envisaged legal reforms of European Union law towards the integration of greater sustainability, we conclude that the option focusing on plant traits delivering sustainability benefits should be chosen, which is most fitting to facilitate a contribution to climate action, the transition towards climate neutrality, and promptly integrate sustainability into all food-related policies. To assist the decision-making in the legislative process, we outline six regulatory options resulting from regulatory research involving interdisciplinary teams.


Asunto(s)
Genómica , Unión Europea
2.
Plant Physiol ; 192(2): 1151-1167, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36852889

RESUMEN

Developmental programmed cell death (dPCD) controls a plethora of functions in plant growth and reproduction. In the root cap of Arabidopsis (Arabidopsis thaliana), dPCD functions to control organ size in balance with the continuous stem cell activity in the root meristem. Key regulators of root cap dPCD including SOMBRERO/ANAC033 (SMB) belong to the NAC family of transcription factors. Here, we identify the C2H2 zinc finger protein ZINC FINGER OF ARABIDOPSIS THALIANA 14 ZAT14 as part of the gene regulatory network of root cap dPCD acting downstream of SMB. Similar to SMB, ZAT14-inducible misexpression leads to extensive ectopic cell death. Both the canonical EAR motif and a conserved L-box motif of ZAT14 act as transcriptional repression motifs and are required to trigger cell death. While a single zat14 mutant does not show a cell death-related phenotype, a quintuple mutant knocking out 5 related ZAT paralogs shows a delayed onset of dPCD execution in the columella and the adjacent lateral root cap. While ZAT14 is co-expressed with established dPCD-associated genes, it does not activate their expression. Our results suggest that ZAT14 acts as a transcriptional repressor controlling a so far uncharacterized subsection of the dPCD gene regulatory network active in specific root cap tissues.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc/fisiología , Apoptosis , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
3.
Nature ; 602(7896): 280-286, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937943

RESUMEN

Grafting is possible in both animals and plants. Although in animals the process requires surgery and is often associated with rejection of non-self, in plants grafting is widespread, and has been used since antiquity for crop improvement1. However, in the monocotyledons, which represent the second largest group of terrestrial plants and include many staple crops, the absence of vascular cambium is thought to preclude grafting2. Here we show that the embryonic hypocotyl allows intra- and inter-specific grafting in all three monocotyledon groups: the commelinids, lilioids and alismatids. We show functional graft unions through histology, application of exogenous fluorescent dyes, complementation assays for movement of endogenous hormones, and growth of plants to maturity. Expression profiling identifies genes that unify the molecular response associated with grafting in monocotyledons and dicotyledons, but also gene families that have not previously been associated with tissue union. Fusion of susceptible wheat scions to oat rootstocks confers resistance to the soil-borne pathogen Gaeumannomyces graminis. Collectively, these data overturn the consensus that monocotyledons cannot form graft unions, and identify the hypocotyl (mesocotyl in grasses) as a meristematic tissue that allows this process. We conclude that graft compatibility is a shared ability among seed-bearing plants.


Asunto(s)
Avena , Raíces de Plantas , Brotes de la Planta , Trasplantes , Triticum , Ascomicetos/patogenicidad , Avena/embriología , Avena/microbiología , Hipocótilo , Meristema , Raíces de Plantas/embriología , Raíces de Plantas/microbiología , Brotes de la Planta/embriología , Brotes de la Planta/microbiología , Triticum/embriología , Triticum/microbiología
4.
J Exp Bot ; 70(21): 6417-6435, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504732

RESUMEN

Appropriate timing of seed germination is crucial for the survival and propagation of plants, and for crop yield, especially in environments prone to salinity or drought. However, the exact mechanisms by which seeds perceive changes in soil conditions and integrate them to trigger germination remain elusive, especially once the seeds are non-dormant. In this study, we determined that the Arabidopsis ERECTA (ER), ERECTA-LIKE1 (ERL1), and ERECTA-LIKE2 (ERL2) leucine-rich-repeat receptor-like kinases regulate seed germination and its sensitivity to changes in salt and osmotic stress levels. Loss of ER alone, or in combination with ERL1 and/or ERL2, slows down the initiation of germination and its progression to completion, or arrests it altogether under saline conditions, until better conditions return. This function is maternally controlled via the tissues surrounding the embryo, with a primary role being played by the properties of the seed coat and its mucilage. These relate to both seed-coat expansion and subsequent differentiation and to salinity-dependent interactions between the mucilage, subtending seed coat layers and seed interior in the germinating seed. Salt-hypersensitive er105, er105 erl1.2, er105 erl2.1 and triple-mutant seeds also exhibit increased sensitivity to exogenous ABA during germination, and under salinity show an enhanced up-regulation of the germination repressors and inducers of dormancy ABA-insensitive-3, ABA-insensitive-5, DELLA-encoding RGL2, and Delay-Of-Germination-1. These findings reveal a novel role of the ERECTA receptor-kinases in the sensing of conditions at the seed surface and the integration of developmental, dormancy and stress signalling pathways in seeds. They also open novel avenues for the genetic improvement of plant adaptation to changing drought and salinity patterns.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Germinación , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Salinidad , Semillas/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación/genética , Giberelinas/metabolismo , Ósmosis , Mucílago de Planta/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Superficie Celular/genética
5.
J Plant Res ; 131(1): 49-58, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29181647

RESUMEN

For millennia, people have cut and joined different plant tissues together through a process known as grafting. By creating a chimeric organism, desirable properties from two plants combine to enhance disease resistance, abiotic stress tolerance, vigour or facilitate the asexual propagation of plants. In addition, grafting has been extremely informative in science for studying and identifying the long-distance movement of molecules. Despite its increasing use in horticulture and science, how plants undertake the process of grafting remains elusive. Here, we discuss specifically the role of eight major plant hormones during the wound healing and vascular formation process, two phenomena involved in grafting. We furthermore present the roles of these hormones during graft formation and highlight knowledge gaps and future areas of interest for the field of grafting biology.


Asunto(s)
Quimera/fisiología , Fitomejoramiento/métodos , Reguladores del Crecimiento de las Plantas/fisiología , Trasplantes
6.
J Exp Bot ; 68(7): 1715-1729, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369468

RESUMEN

Zinc (Zn) deficiency is the most prevalent micronutrient disorder in rice and leads to delayed development and decreased yield. Several studies have investigated how rice plants respond to Zn deficiency and examined the differences between Zn-efficient (ZE) and Zn-inefficient (ZI) genotypes. ZE genotypes reallocate more Zn to roots and are better at maintaining crown root development than ZI genotypes in response to Zn deficiency. However, little is known about the molecular mechanisms controlling these differences. Moreover, the role of the crown, the part of the stem from which crown roots emerge, has yet to be examined. In this study we highlight the molecular mechanisms triggered by early Zn deficiency in crown tissue through RNA sequencing of two contrasting groups of several ZE and ZI genotypes. This method allowed us to (i) identify several novel and well-known Zn transporters involved in Zn retranslocation from the crown to the shoot and roots in response to Zn deficiency; (ii) determine that Zn deficiency triggers the conversion of soluble sugars into starch; and (iii) detect several candidate genes possibly conferring Zn efficiency, including a monosaccharide transporter, a Zn finger domain-containing protein, a gibberellin-stimulated family protein and a plasma membrane polypeptide family protein.


Asunto(s)
Oryza/fisiología , Transcripción Genética , Zinc/deficiencia , Transporte Biológico , Perfilación de la Expresión Génica , Genotipo , Oryza/efectos de los fármacos , Oryza/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Análisis de Secuencia de ARN , Estrés Fisiológico
7.
Front Plant Sci ; 7: 428, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27066060

RESUMEN

Zinc (Zn) deficiency is one of the leading nutrient disorders in rice (Oryza sativa). Many studies have identified Zn-efficient rice genotypes, but causal mechanisms for Zn deficiency tolerance remain poorly understood. Here, we report a detailed study of the impact of Zn deficiency on crown root development of rice genotypes, differing in their tolerance to this stress. Zn deficiency delayed crown root development and plant biomass accumulation in both Zn-efficient and inefficient genotypes, with the effects being much stronger in the latter. Zn-efficient genotypes had developed new crown roots as early as 3 days after transplanting (DAT) to a Zn deficient field and that was followed by a significant increase in total biomass by 7 DAT. Zn-inefficient genotypes developed few new crown roots and did not increase biomass during the first 7 days following transplanting. This correlated with Zn-efficient genotypes retranslocating a higher proportion of shoot-Zn to their roots, compared to Zn-inefficient genotypes. These latter genotypes were furthermore not efficient in utilizing the limited Zn for root development. Histological analyses indicated no anomalies in crown tissue of Zn-efficient or inefficient genotypes that would have suggested crown root emergence was impeded. We therefore conclude that the rate of crown root initiation was differentially affected by Zn deficiency between genotypes. Rapid crown root development, following transplanting, was identified as a main causative trait for tolerance to Zn deficiency and better Zn retranslocation from shoot to root was a key attribute of Zn-efficient genotypes.

8.
Front Plant Sci ; 6: 1160, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26793198

RESUMEN

Zinc (Zn) deficiency is a major constraint to rice production and Zn is also often deficient in humans with rice-based diets. Efforts to breed more Zn-efficient rice are constrained by poor understanding of the mechanisms of tolerance to deficiency. Here we assess the contributions of root growth and root Zn uptake efficiency, and we seek to explain the results in terms of specific mechanisms. We made a field experiment in a highly Zn-deficient rice soil in the Philippines with deficiency-tolerant and -sensitive genotypes, and measured growth, Zn uptake and root development. We also measured the effect of planting density. Tolerant genotypes produced more crown roots per plant and had greater uptake rates per unit root surface area; the latter was at least as important as root number to overall tolerance. Tolerant and sensitive genotypes took up more Zn per plant at greater planting densities. The greater uptake per unit root surface area, and the planting density effect can only be explained by root-induced changes in the rhizosphere, either solubilizing Zn, or neutralizing a toxin that impedes Zn uptake (possibly [Formula: see text] or Fe(2+)), or both. Traits for these and crown root number are potential breeding targets.

9.
J Integr Plant Biol ; 52(2): 195-204, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20377681

RESUMEN

Reactive Oxygen Species (ROS) are continuously produced as a result of aerobic metabolism or in response to biotic and abiotic stresses. ROS are not only toxic by-products of aerobic metabolism, but are also signalling molecules involved in several developmental processes in all organisms. Previous studies have clearly shown that an oxidative burst often takes place at the site of attempted invasion during the early stages of most plant-pathogen interactions. Moreover, a second ROS production can be observed during certain types of plant-pathogen interactions, which triggers hypersensitive cell death (HR). This second ROS wave seems absent during symbiotic interactions. This difference between these two responses is thought to play an important signalling role leading to the establishment of plant defense. In order to cope with the deleterious effects of ROS, plants are fitted with a large panel of enzymatic and non-enzymatic antioxidant mechanisms. Thus, increasing numbers of publications report the characterisation of ROS producing and scavenging systems from plants and from microorganisms during interactions. In this review, we present the current knowledge on the ROS signals and their role during plant-microorganism interactions.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Plantas/metabolismo , Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...