Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Biochem Biophys Res Commun ; 729: 150348, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38986260

RESUMEN

Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/ß-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/ß-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/ß-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/ß-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/ß-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.

2.
Pharm Nanotechnol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38757164

RESUMEN

The rise in global cancer burden, notably breast cancer, emphasizes the need to address chemotherapy-induced cognitive impairment, also known as chemobrain. Although chemotherapy drugs are effective against cancer, they can trigger cognitive deficits. This has triggered the exploration of preventive strategies and novel therapeutic approaches. Nanomedicine is evolving as a promising tool to be used for the mitigation of chemobrain by overcoming the blood-brain barrier (BBB) with innovative drug delivery systems. Polymer and lipid-based nanoparticles enable targeted drug release, enhancing therapeutic effectiveness. Utilizing the intranasal route of administration may facilitate drug delivery to the central nervous system (CNS) by circumventing first-pass metabolism. Therefore, knowledge of nasal anatomy is critical for optimizing drug delivery via various pathways. Despite challenges, nanoformulations exhibit the potential in enhancing brain drug delivery. Continuous research into formulation techniques and chemobrain mechanisms is vital for developing effective treatments. The intranasal administration of nanoformulations holds promise for improving therapeutic outcomes in chemobrain management. This review offers insights into potential future research directions, such as exploring novel drug combinations, investigating alternative delivery routes, or integrating emerging technologies to enhance the efficacy and safety of nanoformulations for chemobrain management.

3.
3 Biotech ; 14(4): 124, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38566928

RESUMEN

Cases of diabetes are significantly increasing year by year, attracting the attention of medical professionals and researchers to focus on diabetes and its underlying complications. One among such are diabetic wounds which are difficult to heal, creating severe implications in the day-to-day chores of not only patients, but also family members. Dehydrozingerone (DHZ) is known to possess various effects like anti-inflammatory, anti-microbial, antioxidant, and wound-healing properties. The effect of DHZ on different phases of diabetic wound healing remains untested. Hence, this study was proposed to find out the effect of oral and topical formulation of DHZ on day 5, 10 and 15 of diabetic wound healing. Excisional wounds were created on the dorsal side of animals using punch biopsy to mimic human diabetic wounds. Topical DHZ gel (100 mg in 1 gm of gel) was prepared using 1% Carbopol 934 and was applied twice a day. The treated groups had increased percentage of wound closure; western blotting suggested that DHZ significantly increased ERK and JNK levels and decreased TNF and MMP 2 and 9 levels. From histopathological studies, it was observed that angiogenesis, collagen formation, granulation tissue formation, and fibroblast proliferation were improved on days 5, 10, and 15 of diabetic wound healing. These findings indicate that DHZ (both systemic and topical) are effective during the early phases of wound healing which gets impaired in diabetic wounds. Dehydrozingerone accelerated diabetic wound healing by regulating the various hallmarks of wound healing process.

4.
Inflammopharmacology ; 32(3): 1759-1775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581640

RESUMEN

AIM: This study was aimed to assess the efficacy and safety of two oral Symptomatic Slow Acting Drugs for Osteoarthritis (SYSADOAs)-Glucosamine Sulfate, Chondroitin Sulfate, and their combination regimen in the management of knee osteoarthritis (KOA). METHODS: This systematic review was conducted according to PRISMA 2020 guidelines. A detailed literature search was performed from 03/1994 to 31/12/2022 using various electronic databases including PubMed, Embase, Cochrane Library, and Google Scholar, using the search terms-Glucosamine sulfate (GS), Chondroitin sulfate (CS), Knee osteoarthritis, Joint pain, Joint disease, and Joint structure, for literature concerning glucosamine, chondroitin, and their combination in knee osteoarthritis treatment. Cochrane Collaboration's Risk assessment tool (version 5.4.1) was used for assessing the risk of bias and the quality of the literature. The data was extracted from the included studies and subjected to statistical analysis to determine the beneficial effect of Glucosamine Sulfate, Chondroitin Sulfate, and their combination. RESULTS: Twenty-five randomized controlled trials (RCTs) were included in this systematic review. In short, exclusively 9 RCTs for GS, 13 RCTs for CS, and 3 RCTs for the combination of GS and CS. All these studies had their treatment groups compared with placebo. In the meta-analysis, CS showed a significant reduction in pain intensity, and improved physical function compared to the placebo; GS showed a significant reduction in tibiofemoral joint space narrowing. While the combination of GS and CS showed neither a reduction in pain intensity, nor any improvement in the physical function. However, the combination exhibited a non-significant reduction in joint space narrowing. In the safety evaluation, both CS and GS have shown good safety profile and were well tolerated. CONCLUSION: This meta-analysis revealed that the CS (with decreased pain intensity and improvement in the physical function), and GS (with significant reduction in the joint space narrowing) have significant therapeutic benefits. However, their combination did not significantly improve the symptoms or modify the disease. This may be due to the limited trials that are available on the combination of the sulfate forms of the intervention. Hence, there is a scope for conducting multicentric randomised controlled trials to evaluate and conclude the therapeutic role of CS and GS combination in the management of KOA.


Asunto(s)
Sulfatos de Condroitina , Quimioterapia Combinada , Glucosamina , Osteoartritis de la Rodilla , Ensayos Clínicos Controlados Aleatorios como Asunto , Sulfatos de Condroitina/administración & dosificación , Sulfatos de Condroitina/efectos adversos , Sulfatos de Condroitina/uso terapéutico , Humanos , Osteoartritis de la Rodilla/tratamiento farmacológico , Glucosamina/uso terapéutico , Glucosamina/administración & dosificación , Glucosamina/farmacología , Resultado del Tratamiento
5.
J Neuroimmune Pharmacol ; 19(1): 7, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421496

RESUMEN

Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.


Asunto(s)
Inflamasomas , Enfermedades Neurodegenerativas , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR , Epigénesis Genética , Inhibición Psicológica
6.
3 Biotech ; 13(12): 385, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37928438

RESUMEN

The aim of our study was to investigate the potential of rutin, catechin, dehydrozingerone, naringenin, and quercetin, both alone and in combination with temozolomide, to inhibit the expression of O6-methylguanine-DNA methyltransferase (MGMT) in glioma cells. MGMT has been shown to be a major cause of temozolomide resistance in glioma. Our study used both in silico and in vitro methods to assess the inhibitory activity of these phytochemicals on MGMT, with the goal of identifying the most effective combination of compounds for reducing temozolomide resistance. After conducting an initial in silico screening of natural compounds against MGMT protein, five phytochemicals were chosen based on their high docking scores and favorable binding energies. From the molecular docking and simulation studies, we found that quercetin showed a good inhibitory effect of MGMT with its high binding affinity. C6 glioma cells showed increased cytotoxicity when treated with the temozolomide and quercetin combination. It was understood from the isobologram and combination index plot that the drug combination showed a synergistic effect at the lowest dose. Quercetin when combined with temozolomide significantly decreased the MGMT levels in C6 cells in comparison with the other drugs as estimated by ELISA. The percentage of apoptotic cells increased significantly in the temozolomide-quercetin group indicating the potency of quercetin in decreasing the resistance of temozolomide as confirmed by acridine orange/ethidium bromide staining. Our experiment hence suggests that temozolomide resistance can be reduced by combining the drug with quercetin which will serve as an effective therapeutic target for glioblastoma treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03821-7.

7.
Biomed Rep ; 19(6): 94, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37901878

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the deadliest types of cancer with poor prognosis, accounting for 85% of all lung cancer cases. The phosphoinositide 3-kinase (PI3K) signaling pathway is most frequently altered in NSCLC; nonetheless, targeting this pathway yields limited success primarily because of drug-induced resistance. PI3K-independent activation of serum and glucocorticoid-induced kinase 1 (SGK1) is responsible for development of resistance to PI3K/AKT inhibitors in breast cancer. The present study investigated potential of inhibiting SGK1 activity for the potentiation of PI3K inhibitor activity in NSCLC cell lines using in vitro anti-proliferation assays, protein expression profiling using western blotting and cell cycle analysis. The findings revealed that combined inhibition of PI3K/AKT and SGK1 resulted in synergistic anticancer activity, with increased apoptosis, DNA damage and cell cycle arrest in G1 phase. Furthermore, high SGK1 protein expression in NSCLC cell lines was associated with increased resistance to PI3K inhibitors. Therefore, enhanced SGK1 expression may serve as a marker to predict therapeutic response to PI3K/AKT inhibitors. Profiling of downstream signaling proteins demonstrated that, at the molecular level SGK1-mediated sensitization of NSCLC cell lines to PI3K inhibitors was achieved via inhibition of mTORC1 signaling. Increased sensitivity of NSCLC cell lines was also mediated by other oncogenic pathways, such as Ras/MEK/ERK and Wnt/ß-catenin signaling.

8.
3 Biotech ; 13(11): 377, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37885753

RESUMEN

Statin-associated diabetes (SAD) is an issue that has come to light after a series of recent clinical trials that has led to the issue of a black box warning for statins by the US FDA. However, the benefit of statin outweighs its risk. Nevertheless, experiments have been conducted to identify the mechanism by which statins aggravate the risk of diabetes only in a select population who bear the risk factors of obesity, sedentary lifestyle, hypertension, and other associated risk factors of lifestyle disorders. In this study, the possibility of utilization of a phyto-molecule, sesamol, for its ability to combat statin-associated diabetes using atorvastatin as the agent of choice has been explored. MMP assay and western blot was conducted to investigate the effects of atorvastatin on apoptotic cascade with sesamol as a protective agent was conducted in MIN-6 cells. Effect of the combination was tested in L6 cells with 2-NBDG uptake assay and as well as western blot for GLUT-4. A diet-induced hypercholesterolemia model was developed in an in vivo model animals and treated with atorvastatin and sesamol with histopathological analysis being carried out to evaluate the apoptotic markers and GLUT-4 presence. It was found that sesamol can combat pancreatic beta cell apoptosis via the internal apoptotic pathway activated by atorvastatin. With regards to muscle cells, sesamol could improve the GLUT-4 vesical production, but not improve glucose uptake which is inhibited by atorvastatin. These findings are further confirmed by animal studies. These findings indicate that sesamol can serve as a prototype molecule for further development and investigation of similar compounds to tackle SAD.

9.
Pharmacol Rep ; 75(5): 1096-1114, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673852

RESUMEN

Disruption of the skin barrier and immunity has been associated with several skin diseases, namely atopic dermatitis (AD), psoriasis, and acne. Resident and non-resident immune cells and the barrier system of the skin are integral to innate immunity. Recent advances in understanding skin microbiota have opened the scope of further understanding the various communications between these microbiota and skin immune cells. Vitamins, being one of the important micronutrients, have been reported to exert antioxidant, anti-inflammatory, and anti-microbial effects. The immunomodulatory action of vitamins can halt the progression of skin diseases, and thus, understanding the immuno-pharmacology of these vitamins, especially for skin diseases can pave the way for their therapeutic potential. At the same time, molecular and cellular markers modulated with these vitamins and their derivatives need to be explored. The present review is focused on significant vitamins (vitamins A, B3, C, D, and E) consumed as nutritional supplements to discuss the outcomes and scope of studies related to skin immunity, health, and diseases.


Asunto(s)
Dermatitis Atópica , Microbiota , Humanos , Vitaminas/uso terapéutico , Piel , Dermatitis Atópica/tratamiento farmacológico , Inmunidad Innata , Vitamina A/uso terapéutico , Vitamina K/uso terapéutico
10.
J Chromatogr Sci ; 61(9): 827-837, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37554069

RESUMEN

Stability indicating a reverse-phase HPLC analytical method for the quantification of tamoxifen citrate (TMX) in the bulk and lipidic nano-vesicles (LNVs) was developed. The optimized method was validated according to the ICH Q2 (R1) guidelines by following a three-factor interaction Box-Behnken design using Design-Expert® software. The responses measured at 236 nm were retention time (Rt), peak area, tailing factor (TF) and the number of theoretical plates. TMX was eluted best using the Luna® C18 LC Column along with a mobile phase of methanol (MeOH) and ammonium acetate buffer (AAB pH 4.5) 80:20 v/v mixture at 25 ± 2°C temperature. The currently developed method was linear in 100-5,000 ng/mL range with a detection limit of 4.55 ng/mL and a quantification limit of 13.78 ng/mL. The optimized method was utilized to evaluate the stability of TMX in different stress conditions by performing forced degradation studies. The results from the degradation study stipulated that on exposure to various stressors namely acid, alkali, oxidative, thermal and UV light, the TMX did not show considerable degradation except for UV light exposure. Further, the method was successfully used for the quantification of TMX in LNVs.


Asunto(s)
Tamoxifeno , Cromatografía Líquida de Alta Presión/métodos , Estabilidad de Medicamentos
11.
Mol Divers ; 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392347

RESUMEN

Drug-induced liver injury can be caused by any drugs, their metabolites, or natural products due to the inefficient functioning of drug-metabolizing enzymes, resulting in reactive oxygen species generation and leading to oxidative stress-induced cell death. For protection against oxidative stress, our cell has various defense mechanisms. One of the mechanisms is NRF2 pathway, when activated, protects the cell against oxidative stress. Natural antioxidants such as Sesamol have reported pharmacological activity (hepatoprotective & cardioprotective) and signaling pathways (NRF2 & CREM) altering potential. A Computational analysis was done using molecular docking, IFD, ADMET, MM-GBSA, and Molecular dynamic simulation of the Schrödinger suite. A total of 63,345 Sesamol derivatives were downloaded for the PubChem database. The protein structure of KEAP1-NRF2 (PDB: 4L7D) was downloaded from the RCSB protein database. The molecular docking technique was used to screen compounds that can form an interaction similar to the co-crystalized ligand (1VX). Based on MM-GBSA, docking score, and interactions, ten compounds were selected for ADMET profiling and IFD. After IFD, five compounds (66867225, 46148111, 12444939, 123892179, & 94817569) were selected for molecular dynamics simulation (MDS). Protein-ligand complex stability was assessed during MDS. The selected compounds (66867225, 46148111, 12444939, 123892179, & 94817569) complex with KEAP1 protein shows good stability and bond retentions. In our study, we observed that the selected compounds show good interaction, PCA, Rg, binding free energy, and ADMET profile. We can conclude that the selected compounds can act as NRF2 activators, which should be validated using proper in-vivo/in-vitro models.

12.
Curr Pharm Des ; 29(22): 1775-1790, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37403389

RESUMEN

Due to ineffective diagnosis and analysis, glioblastoma multiforme (GBM), is still the most aggressive form of all cancers. Standard therapy for GBM comprises resection surgery following chemo and radiotherapy, which offers less efficacious treatment to the malignant nature of glioma. Several treatment strategies involving gene therapy, immunotherapy, and angiogenesis inhibition have been employed recently as alternative therapeutics. The main drawback of chemotherapy is resistance, which is mainly due to the enzymes involved in the therapeutic pathways. Our objective is to provide a clear insight into various nano-architectures used in the sensitization of GBM and their importance in drug delivery and bioavailability. This review includes the overview and summary of articles from Pubmed and Scopus search engines. The present era's synthetic and natural drugs used in the treatment of GBM are facing poor Blood Brain Barrier (BBB) permeability issues due to greater particle size. This problem can be resolved by using the nanostructures that showcase high specificity to cross the BBB with their nano-scale size and broader surface area. Nano-architectures act as promising tools for effective brain-targeted drug delivery at a concentration well below the final dose of free drug, thus resulting in safe therapeutic effects and reversal of chemoresistance. The present review focuses on the mechanisms involved in the resistance of glioma cells to chemotherapeutic agents, nano-pharmacokinetics, diverse types of nano-architectures used for potent delivery of the medicine and sensitization in GBM, their recent clinical advances, potential challenges, and future perspective.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Barrera Hematoencefálica/metabolismo
13.
J Basic Clin Physiol Pharmacol ; 34(2): 137-150, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995024

RESUMEN

Diabetic wounds are of profound clinical importance. Despite immense efforts directed towards its management, it results in the development of amputations, following a diagnosis of diabetic foot. With a better understanding of the complexities of the microbalance involved in the healing process, researchers have developed advanced methods for the management of wounds as well as diagnostic tools (especially, for wound infections) to be delivered to clinics sooner. In this review, we address the newer developments that hope to drive the transition from bench to bedside in the coming decade.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos , Pie Diabético/terapia , Pie Diabético/diagnóstico , Cicatrización de Heridas
14.
CNS Neurol Disord Drug Targets ; 22(6): 817-831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35379142

RESUMEN

BACKGROUND: Chemotherapy with the oral alkylating agent temozolomide still prevails as a linchpin in the therapeutic regimen of glioblastoma alongside radiotherapy. Because of the impoverished prognosis and sparse chemotherapeutic medicaments associated with glioblastoma, the burgeoning resistance to temozolomide has made the whole condition almost irremediable. OBJECTIVE: The present review highlights the possible mechanisms of drug resistance following chemotherapy with temozolomide. METHODS: The review summarizes the recent developments, as published in articles from Scopus, PubMed, and Web of Science search engines. DESCRIPTION: One of the prime resistance mediators, O-6-methylguanine-DNA methyltransferase, upon activation, removes temozolomide-induced methyl adducts bound to DNA and reinstates genomic integrity. In the bargain, neoteric advances in the conception of temozolomide resistance have opened the door to explore several potential mediators like indirect DNA repair systems, efflux mechanisms, epigenetic modulation, microenvironmental influences, and autophagy-apoptosis processes that constantly lead to the failure of chemotherapy. CONCLUSION: This review sheds light on recent discoveries, proposed theories, and clinical developments in the field of temozolomide resistance to summarize the complex and intriguing involvement of oncobiological pathways.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/uso terapéutico , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , ADN/uso terapéutico , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo
15.
J Cell Commun Signal ; 17(3): 673-688, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36280629

RESUMEN

INTRODUCTION: One of the most common problems of diabetes are diabetic foot ulcers (DFUs). According to National Institute for Health, initial management of DFUs can decrease the complication of limb amputations and can improve the patient's quality of life. DFU treatment can be optimized with the help of multidisciplinary approach. Based on many studies, control of glucose levels in blood, antioxidant activity, reduction in cytokine levels, re-epithelialization, collagen formation, migration of fibroblasts are major phases involved in managing DFU. Dehydrozingerone (DHZ), has been known for its anti-inflammatory, antioxidant and wound healing properties. METHODOLOGY: Three months high-fat diet and low dose of streptozotocin-induced type-II diabetic foot ulcer model was used to evaluate the effectiveness of dehydrozingerone. DHZ was given orally to rats for 15 days post wounding. TNF-α, IL-1ß and antioxidant parameters like lipid peroxidation, glutathione reductase were estimated. Immunoblotting was done to investigate the effect of DHZ on the expression of ERK, JNK, HSP-27, P38, SIRT-1, NFκB, SMA, VEGF and MMP-9 in skin tissue. Histopathology was performed for analyzing DHZ effect on migration of fibroblasts, formation of epithelium, granulation tissue formation, angiogenesis and collagen formation. RESULTS: DHZ decreased the levels of malondialdehyde, TNF-α, IL-1ß and increased glutathione levels in wound tissue. Western blotting results suggested that DHZ activated ERK1/2/JNK/p38 signaling, increased expression of HSP-27, SIRT-1, VEGF, SMA thus facilitating the migration and proliferation of fibroblasts, angiogenesis and decreased inflammation. Masson Trichrome & histopathology showed an increase in collagen, epithelial and granulation tissue formation. CONCLUSION: DHZ significantly accelerates the healing of diabetic foot ulcers in high fat diet fed plus low dose streptozotocin induced type-II diabetic Wistar rats.

16.
J Biomol Struct Dyn ; 41(19): 9193-9210, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36326112

RESUMEN

Inflammation and oxidative stress can contribute to the etiology of metabolic and chronic illnesses. The ability to prevent oxidative stress induced diseases such as cancer, cardiovascular disease, Alzheimer's disease, and others has been the subject of global research. Drug-induced liver injury (DILI) pathogenesis can be either due to oxidative stress or inflammatory response elicited by the drug, its metabolite, or herbal supplements. Our present research uses computational studies to identify a molecule with anti-inflammatory properties that can operate as an NRF2 activator. Acquiring and preparing the KEAP1-NRF2 Protein (PDB: 4L7D) with Schrodinger Suite was followed by developing a ligand library (Anti-inflammatory library downloaded from ChemDiv database). Molecular docking studies were performed in HTVS, SP, and XP modes, respectively. Based on the docking score, interaction, ADMET and binding free energy, the top ten compounds were selected and subjected to induced-fit docking (IFD) analysis for further study. The top three molecules were chosen for a molecular dynamics (MD) simulation study. Using the Desmond module of the Schrodinger Suite, the stability of the protein-ligand complex and protein-ligand contact throughout 100ns were evaluated during the MD simulation study. In our study, it was observed that three compounds exhibit exceptional stability and retain the essential interaction throughout the studies, and it is anticipated that these compounds may act as effective NRF2 activators. Further in vitro and in vivo assessments can be conducted to determine its potential to prevent DILI via acting as an NRF2 activator for future drug development.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Factor 2 Relacionado con NF-E2 , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , Factor 2 Relacionado con NF-E2/metabolismo , Ligandos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Simulación de Dinámica Molecular , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Antiinflamatorios/farmacología
17.
Diabetes Metab Syndr ; 16(7): 102542, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35724488

RESUMEN

BACKGROUND & AIM: Diabetic foot ulcers are major cause of lower limb amputations in the diabetic population. The major factors that play a role in causing the delay of the process of healing in diabetic foot ulcers broadly are decreased angiogenesis, reduced proliferation and migration of keratinocytes/fibroblasts. The typical wound healing process has four phases which are overlapping with each other thus making the healing even more complex. Hence it is essential to identify a therapeutic target that involves the regulation of the cellular factors involved in healing and helps to increase angiogenesis and can regulate all four phases accordingly. METHOD: Literature review involved a search of the databases namely, PubMed, Cochrane, EMBASE, and Web of Science database. Articles were identified and retrieved that specifically dealt with Notch as a target in healing of wounds and its mechanism of action on various cells and phases of healing. RESULTS: Notch is a cell surface receptor which interacts with transmembrane ligands of the nearby cells and is involved in cell proliferation, differentiation, cell fate and death. It is also involved in cell-to-cell communication, cell signaling, and various phases of development. There exist four known notch genes and five ligands which interact with notch proteins. Hyperglycemia plays a role in the activation of the notch receptor thus causing the release of inflammatory mediators via macrophages. As notch can regulate macrophage-mediated inflammation it can serve as a therapeutic target for diabetic foot ulcers. CONCLUSION: This review focuses on the effect of notch on various cell mediators and phases of diabetic wound healing and deals with how notch activation or inhibition can serve as a potential therapeutic target for healing diabetic foot ulcers.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Amputación Quirúrgica , Pie Diabético/terapia , Humanos , Ligandos , Transducción de Señal , Cicatrización de Heridas/fisiología
18.
Curr Pharm Des ; 28(23): 1885-1896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585809

RESUMEN

BACKGROUND: Nanosponge, as a carrier for the skin delivery system for drugs, plays a vital role. It not only serves to administer the drug to the targeted layer of skin but also increases the drug retention and deposition on the skin. OBJECTIVE: In this review, we aim to highlight the effects of several processes and formulation variables prompting the characteristics of various nanosponges for the delivery of drugs into/ across the skin. METHODS: In the present review article, the overall introduction of nanosponges, their preparation, characteristic features, advantages, disadvantages, and factors affecting their preparation, are covered. Furthermore, an elaborative description of nanosponges for skin delivery and its toxicological perspective with some referential examples of nanosponge drugs has also been deliberated here. RESULTS: Factors associated with the formation of nanosponges can directly or indirectly affect its efficacy in the skin delivery of drugs. These nanoforms are efficient in delivering the drugs which possess lower aqueous solubility, therefore, the aqueous solubility of drugs possessing a narrow therapeutic window can easily be enhanced. It also helps in achieving targeted drug delivery, controlled release of drugs, increases bioavailability, reduces drug toxicity, decreases drug degradation, and many more. CONCLUSION: Nanosponges have been identified as potential drug delivery carriers into as well as across skin. Delivery of biologics such as vaccines, enzymes, peptides, proteins, and antibodies, is also gaining attention in the recent past.


Asunto(s)
Ciclodextrinas , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Piel , Solubilidad
19.
Phytother Res ; 36(3): 1064-1092, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35084066

RESUMEN

The cardioprotective role of naringin has been scientifically well demonstrated in various experimental models such as diabetic cardiomyopathy, ischemic heart diseases, diet-induced cardiac injury, antihypertensive and anti-platelet activities through various mechanisms. However, there is no meta-analysis performed on the cardioprotective activity of naringin. This systematic review and meta-analysis were focused to summarize and conclude the therapeutic benefits of naringin in various cardiovascular disorders using pre-clinical evidence. The online search was performed using electronic databases such as PubMed/Medline, Scopus, ScienceDirect, and Google scholar. The search was mainly focused on the role of naringin in various cardiovascular disorders in experimental animals. Based on the inclusion and exclusion criteria 34 studies were selected. The meta-analysis revealed that naringin could significantly alleviate various physical and chemical stimuli induced cardiovascular disorders such as diabetic cardiomyopathy, ischemic heart diseases, oxidative stress-induced cardiac injury, diet-induced cardiovascular dysfunctions in experimental models involving multiple mechanisms such as antioxidant (ROS/RNS pathways), anti-inflammatory (COX-2, IL-6, TNF-α, NF-κB pathways), enhancing angiogenic factors (VEGF, VCAM, HIF-1α, iNO), suppressing the apoptotic factors (BCL-2, BAX, caspases) and modulation of PCSK-9, PKCα/ß, PPAR-α, JAK/STAT, MAPKs (p38α, ERK1/2, JNK), and PI3K/AKT/mTOR/p70S6K associated pathways. Further, these changes at the cellular and molecular levels were manifested as improvement in the structural, functional, and physiology of the heart upon the naringin treatment. In conclusion, this systematic review and meta-analysis support the available scientific evidence on the therapeutic benefits of naringin in the management of various cardiovascular conditions.


Asunto(s)
Flavanonas , Fosfatidilinositol 3-Quinasas , Animales , Flavanonas/farmacología , Flavanonas/uso terapéutico , FN-kappa B/metabolismo , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo
20.
3 Biotech ; 11(9): 411, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34466348

RESUMEN

Pharmacological treatment for BPH includes 5-α reductase inhibitors as Finasteride and Dutasteride as a monotherapy or in combination with antimuscarinic drugs, alpha-blockers, 5-phosphodiesterase inhibitor drugs. Androgen receptor inhibitors revealed several adverse events as decreased libido, erectile dysfunction, ejaculatory dysfunction, and gynecomastia. Hence, the emergence of complementary and alternative medications having safety profile-preferably, edible natural products-would be highly desirable. In-silico studies based on Maestro Molecular Modelling platform (version 10.5) by SchrÓ§dinger, LLC was used to identify the lead molecules. The in-vivo activity studied on rats gave the positive results. The findings based on experiments as antioxidant parameters showed the potential to quench the free radicals. The significant results were also seen in prostatic index and histopathological studies supported the above findings. Based on these data, sesamol and derivative have proven efficacy in protecting against testosterone induced BPH. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02952-z.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...