Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 17467, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060717

RESUMEN

Despite being studied for nearly 50 years, smallest chemically stable moieties in the metallic glass (MG) could not be found experimentally. Herein, we demonstrate a novel experimental approach based on electrochemical etching of amorphous alloys in inert solvent (acetonitrile) in the presence of a high voltage (1 kV) followed by detection of the ions using electrolytic spray ionization mass spectrometry (ESI MS). The experiment shows stable signals corresponding to Pd, PdSi and PdSi2 ions, which emerges due to the electrochemical etching of the Pd80Si20 metallic glass electrode. These fragments are observed from the controlled dissolution of the Pd80Si20 melt-spun ribbon (MSR) electrode. Annealed electrode releases different fragments in the same experimental condition. These specific species are expected to be the smallest and most stable chemical units from the metallic glass which survived the chemical dissolution and complexation (with acetonitrile) process. Theoretically, these units can be produced from the cluster based models for the MG. Similar treatment on Pd40Ni40P20 MSR resulted several complex peaks consisting of Pd, Ni and P in various combinations suggesting this can be adopted for any metal-metalloid glass.

2.
Small ; 16(39): e2004400, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32885564

RESUMEN

The properties of a material can be engineered by manipulating its atomic and chemical architecture. Nanoglasses which have been recently invented and comprise nanosized glassy particles separated by amorphous interfaces, have shown promising properties. A potential way to exploit the structural benefits of nanoglasses and of nanocrystalline materials is to optimize the composition to obtain crystals forming within the glassy particles. Here, a metastable Fe-10 at% Sc nanoglass is synthesized. A complex hierarchical microstructure is evidenced experimentally at the atomic scale. This bulk material comprises grains of a Fe90 Sc10 amorphous matrix separated by an amorphous interfacial network enriched and likely stabilized by hydrogen, and property-enhancing pure-Fe nanocrystals self-assembled within the matrix. This composite structure leads a yield strength above 2.5 GPa with an exceptional quasi-homogeneous plastic flow of more than 60% in compression. This work opens new pathways to design materials with even superior properties.

3.
ACS Nano ; 14(5): 5543-5552, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32267141

RESUMEN

Despite being researched for nearly five decades, chemical application of metallic glass is scarcely explored. Here we show electrochemical nonenzymatic glucose-sensing ability of nickel-niobium (Ni60Nb40) amorphous alloys in alkaline medium. Three different Ni60Nb40 systems with the same elemental composition, but varying microstructures are created following different synthetic routes and tested for their glucose-sensing performance. Among melt-spun ribbon, nanoglass, and amorphous-crystalline nanocomposite materials, nanoglass showed the best performance in terms of high anodic current density, sensitivity (20 mA cm-2 mM-1), limit of detection (100 nM glucose), stability, reproducibility (above 5000 cycles), and sensing accuracy among nonenzymatic glucose sensors involving amorphous alloys. When annealed under vacuum, only the heat-treated nanoglass retained a similar electrochemical-sensing property, while the other materials failed to yield desired results. In nanoglass, a network of glassy interfaces, compared to melt-spun ribbon, is plausibly responsible for the enhanced sensitivity.


Asunto(s)
Glucosa , Niobio , Técnicas Electroquímicas , Electrodos , Níquel , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...