Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(82): 12350-12353, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37767978

RESUMEN

The synthesis of an alkene is reported which is concurrently twisted (twist angle = 86.6(8)°), push-pull (dipole moment = 7.48 D), and electron-rich (E1/2 = -1.45 V and -0.52 V vs. Fc/Fc+) in nature, comprising a unique trinity combination for the alkene class of compounds. Subsequently, this newly synthesized alkene-motif was used as a donor for the synthesis of a zwitterionic boron-containing π-conjugated compound (dipole moment = 12.17 D) through an intramolecular charge transfer process exploiting the π-conjugated donor-acceptor system.

2.
Angew Chem Int Ed Engl ; 62(45): e202311868, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37646230

RESUMEN

A modular approach for the synthesis of isolable crystalline Schlenk hydrocarbon diradicals from m-phenylene bridged electron-rich bis-triazaalkenes as synthons is reported. EPR spectroscopy confirms their diradical nature and triplet electronic structure by revealing a half-field signal. A computational analysis confirms the triplet state to be the ground state. As a proof-of-principle for the modular methodology, the 4,6-dimethyl-m-phenylene was further utilized as a coupling unit between two alkene motifs. The steric conjunction of the 4,6-dimethyl groups substantially twists the substituents at the nonbonding electron bearing centers relative to the central coupling m-phenylene motif. As a result, the spin delocalization is decreased and the exchange coupling between the two unpaired spins, hence, significantly reduced. Notably, 108 years after Schlenk's m-phenylene-bis(diphenylmethyl) synthesis as a diradical, for the first time we were able to isolate its derivative with the same spacer, i.e. m-phenylene, between two radical centers in a crystalline form.

3.
Chem Asian J ; 18(2): e202201138, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36448356

RESUMEN

Sustainable noble metal-N-heterocyclic carbenes (NHC's) are a topic of arising concern in both the chemical industry and the academic community due to a growing consciousness of environmental pollution and scarcity. Recovering and reusing homogeneous catalysts from the reaction mixture requires a tremendous amount of capital investment in the chemical manufacturing industry. Heterogeneous catalysts are proved to have better functional groups tolerance; however, catalysts support largely influences the active catalyst sites to affect catalyst efficiency and selectivity. Thus the, choice of catalyst supports plays an almost decisive role in this emerging area of catalysis research. Graphene oxide (GO)/reduced graphene oxide (rGO) support has a potential growth in heterogeneous catalysis owing to their commercial availability, considerably larger surface area, inert towards chemical transformations, and easy surface functionalization to attached metal complexes via covalent and non-covalent aromatic π-conjugates. To take advantage of two independently well-established research areas of noble metal-N-heterocyclic carbenes and GO/rGO support via covalent or non-covalent interactions approach would offer novel heterogeneous complexes with improved catalytic efficiency without sacrificing product selectivity. This unique concept of marrying metal-N-heterocyclic carbenes with GO/rGO support has potential growth in the chemical and pharmaceutical industry, however, limited examples are reported in the literature. In this perspective, a comprehensive summary of metal-NHC synthesis on GO/rGO support and synthetic strategies to graft M-NHC onto GO/rGO surface, catalytic efficiency, for the catalytic transformation are critically reviewed. Furthermore, a plausible mechanism for non-covalent grafting methodology is summarized to direct readers to give a better understanding of M-NHC@rGO complexes. This would also allow the designing of engineered catalysts for unexplored catalytic applications.


Asunto(s)
Grafito , Metales , Grafito/química , Catálisis
4.
Chem Asian J ; 17(18): e202200594, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35880638

RESUMEN

The first discrete seven-membered cyclic zinc(II) complex catalyzed room temperature Knoevenagel condensation reactions, and the synthesis of perimidine derivatives has been reported under mild reaction conditions. The cyclic zinc(II) complex [(L)ZnBr2 ] (1) was isolated from the reaction between 1-(2-hydroxyethyl)-3-isopropyl-benzimidazol-2-thione (L) and ZnBr2 . Complex 1 was characterized by different analytic techniques such as FT-IR, CHNS, TGA, NMR, and SCXRD. The mononuclear zinc(II) complex 1 was utilized as a catalyst for Knoevenagel condensation reactions to isolate twenty different substituted methylene malononitriles with excellent yield. Besides, the zinc(II) thione complex 1 was utilized for the synthesis of 2,4-dihydroperimidine derivatives in a highly efficient manner. Catalyst 1 depicted wide substrate scopes. Overall, twenty different substituted methylene malononitriles and nine different perimidine derivatives were synthesized using catalyst 1 at room temperature. The present investigation features a mild and fast synthetic approach along with excellent functional group tolerance.


Asunto(s)
Tionas , Zinc , Catálisis , Espectroscopía Infrarroja por Transformada de Fourier , Zinc/química
5.
Chem Asian J ; 16(5): 521-529, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33442961

RESUMEN

The synthesis and the luminescence features of three gold(I)-N-heterocyclic carbene (NHC) complexes are presented to study how the n-alkyl group can influence the luminescence properties in the crystalline state. The mononuclear gold(I)-NHC complexes, [(L1 )Au(Cl)] (1), [(L2 )Au(Cl)] (2), and [(L3 )Au(Cl)] (3) were isolated from the reactions between [(tht)AuCl] and corresponding NHC ligand precursors, [N-(9-acridinyl)-N'-(n-butyl)-imidazolium chloride, (L1 .HCl)], [N-(9-acridinyl)-N'-(n-pentyl)-imidazolium chloride, (L2 .HCl)] and [N-(9-acridinyl)-N'-(n-hexyl)-imidazolium chloride, (L3 .HCl)]. Their single-crystal X-ray analysis reveals the influence of the n-alkyl groups on solid-state packing. A comparison of the luminescence features of 1-3 with n-alkyl substituents is explored. The molecules 1-3 depicted blue emission in the solution state, while the yellow emission (for 1), greenish-yellow emission (for 2), and blue emission (for 3) in the crystalline phase. This paradigm emission shift arises from n-butyl to n-pentyl and n-hexyl in the crystalline state due to the carbon-carbon rotation of the n-alkyl group, which tends to promote unusual solid packing. Hence n-alkyl group adds a novel emission property in the crystalline state. Density Functional Theory and Time-Dependent Density Functional Theory calculations were carried out for monomeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride and dimeric complex, N-(9-acridinyl)-N'-(n-heptyl)imidazole-2-ylidene gold(I) chloride to understand the structural and electronic properties.

6.
Dalton Trans ; 49(47): 17331-17340, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33206066

RESUMEN

Novel antimony(iii) imidazole selone complexes in a super crowded environment are reported for the first time. The super bulky selone antimony complexes, [{IPr*Se}(SbCl3)2] (1) and [{IPr*Se}(SbBr3)2] (2), were isolated from the reactions between IPr*Se (IPr*Se = [1,3-bis(2,6-diphenylmethylphenyl)imidazole selone]) and suitable antimony(iii) halides. 1 and 2 are dinuclear complexes with a Sb : Se ratio of 1 : 0.5 with an unusual coordination mode of selone. The molecules 1 and 2 consist of both Menshutkin-type Sbπaryl interactions and a Sb-Se coordination bond. However, the reaction between antimony(iii) halides and [(IPaul)Se] ([(IPaul)Se] = [1,3-bis(2,4-methyl-6-diphenyl phenyl)imidazole selone]) with a spatially defined steric impact gave the dinuclear complex [{(IPaul)Se}(SbCl3)]2 (3) and the mononuclear complex [{(IPaul)Se}(SbBr3)] (4) without Menshutkin-type interactions. The Sb : Se ratio in 3 and 4 is 1 : 1. Interestingly, the Menshutkin-type interaction was absent in 3 and 4 due to the efficient coordinating ability of the ligand [(IPaul)Se] with the Sb(iii) center compared to that of the super bulky ligand IPr*Se. The thermal property of these antimony selone complexes was also investigated. Density functional theory (DFT) calculations were carried out on the model systems [L(SbCl3)2] (1A), [L(SbCl3)] (1B), [L'(SbCl3)2] (1C), and [L'(SbCl3)] (1D), where L = [1,3-bis(2,6-diisopropyl-4-methyl phenyl)imidazole selone] and L' = [1,3-bis(phenyl)imidazole selone], to understand the nature of orbitals and bonding situations. The computed metrical parameters of 1A are in good agreement with the experimental values. Natural population analysis of the model system reveals that the natural charge and total population of antimony(iii) are comparable. The unequal interaction between selenium and antimony obtained using Wiberg bond indices (WBIs) is fully consistent with the findings of the single-crystal X-ray studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...