Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 926: 148618, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821327

RESUMEN

Non-polio enterovirus infections are known to cause a variety of diseases and neurological complications. It is also known that the severity of these diseases largely differs among individuals with different genotypes and alleles. The Single Nucleotide Polymorphisms (SNPs) within specific genes have a considerable effect on the immune response to enteroviruses and on the outcome of disease, leading to variations in complications and infection susceptibility. Knowing the distribution of such SNPs can be valuable for individual case management and studying epidemiological parameters of enterovirus infections. In this feasibility study, a multiplex version of the primer extension-based technique called the SNaPshot Assay has been developed to examine SNPs in various relevant genes for predicting the clinical severity of enterovirus infections. It is already established that this technique is precise, consistent, scalable, and likely to exhibit high throughput. The multiplex SNaPshot can investigate multiple genetic susceptibility markers simultaneously, and the assay can be used to identify vulnerable populations, understand the epidemiology of infections, and manage the outbreaks of enteroviruses. Based on the literature, 15 SNPs were identified which are suspected for higher susceptibility to the worst outcomes after enterovirus infection and the assay was developed. Blood samples of 100 healthy volunteers were collected and tested for assay feasibility as well as to know the proportions of 15 selected SNPs. After the analysis, seven SNPs have been identified and suggested to be considered for future assays. Based on the pilot test results, it appears that positivity for any three out of the identified seven SNPs might indicate a higher risk, and future studies correlated with clinical studies among patients with and without severe diseases utilizing this assay will provide robust parameters to determine at-risk individuals more accurately.

2.
Int Immunopharmacol ; 132: 111930, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537538

RESUMEN

Long COVID was reported as a multi-systemic condition after the infection of SARS-CoV-2, and more than 65 million people are suffering from this disease. It has been noted that around 10% of severe SARS-CoV-2 infected individuals are suffering from the enduring effects of long COVID. The symptoms of long COVID have also been noted in several mild or asymptomatic SARS-CoV-2 infected individuals. While limited reports on clinical trials investigating new therapeutics for long COVID exist, there is an abundance of scattered information available regarding these trials. This review explores the extensive literature search, and complete clinical trial database search to map the current status of long COVID clinical trials worldwide. The study listed about 110 long COVID clinical trials. In addition to conducting extensive long COVID clinical trials, we have comprehensively presented an overview of the condition, its symptoms, notable manifestations, associated clinical trials, the unique challenges it poses, and our recommendations for addressing long COVID.


Asunto(s)
COVID-19 , Ensayos Clínicos como Asunto , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Humanos , COVID-19/terapia , Tratamiento Farmacológico de COVID-19
3.
Cancers (Basel) ; 15(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37345145

RESUMEN

Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are enzymes that remove or add acetyl groups to lysine residues of histones, respectively. Histone deacetylation causes DNA to more snugly encircle histones and decreases gene expression, whereas acetylation has the opposite effect. Through these small alterations in chemical structure, HATs and HDACs regulate DNA expression. Recent research indicates histone deacetylase inhibitors (HDACis) may be used to treat malignancies, including leukemia, B-cell lymphoma, virus-associated tumors, and multiple myeloma. These data suggest that HDACis may boost the production of immune-related molecules, resulting in the growth of CD8-positive T-cells and the recognition of nonreactive tumor cells by the immune system, thereby diminishing tumor immunity. The argument for employing epigenetic drugs in the treatment of acute myeloid leukemia (AML) patients is supported by evidence that both epigenetic changes and mutations in the epigenetic machinery contribute to AML etiology. Although hypomethylating drugs have been licensed for use in AML, additional epigenetic inhibitors, such as HDACis, are now being tested in humans. Preclinical studies evaluating the efficacy of HDACis against AML have shown the ability of specific agents, such as anobinostat, vorinostat, and tricostatin A, to induce growth arrest, apoptosis, autophagy and cell death. However, these inhibitors do not seem to be successful as monotherapies, but instead achieve results when used in conjunction with other medications. In this article, we discuss the mounting evidence that HDACis promote extensive histone acetylation, as well as substantial increases in reactive oxygen species and DNA damage in hematological malignant cells. We also evaluate the potential of various natural product-based HDACis as therapeutic agents to combat hematological malignancies.

5.
Biomedicines ; 10(7)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35884770

RESUMEN

COVID-19 vaccines have been developed to confer immunity against the SARS-CoV-2 infection. Prior to the pandemic of COVID-19 which started in March 2020, there was a well-established understanding about the structure and pathogenesis of previously known Coronaviruses from the SARS and MERS outbreaks. In addition to this, vaccines for various Coronaviruses were available for veterinary use. This knowledge supported the creation of various vaccine platforms for SARS-CoV-2. Before COVID-19 there are no reports of a vaccine being developed in under a year and no vaccine for preventing coronavirus infection in humans had ever been developed. Approximately nine different technologies are being researched and developed at various levels in order to design an effective COVID-19 vaccine. As the spike protein of SARS-CoV-2 is responsible for generating substantial adaptive immune response, mostly all the vaccine candidates have been targeting the whole spike protein or epitopes of spike protein as a vaccine candidate. In this review, we have compiled the immune response to SARS-CoV-2 infection and followed by the mechanism of action of various vaccine platforms such as mRNA vaccines, Adenoviral vectored vaccine, inactivated virus vaccines and subunit vaccines in the market. In the end we have also summarized the various adjuvants used in the COVID-19 vaccine formulation.

7.
Infect Genet Evol ; 101: 105282, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35427787

RESUMEN

BACKGROUND: The massive increase in COVID-19 infection had generated a second wave in India during May-June 2021 with a critical pandemic situation. The Delta variant (B.1.617.2) was a significant factor during the second wave. Conversely, the UK had passed through the crucial phase of the pandemic from November to December 2020 due to B.1.1.7. The study tried to comprehend the pandemic response in the UK and India to the spread of the B.1.1.7 (Alpha, UK) variant and B.1.617.2 (Delta, India) variant. METHODS: This study was performed in three directions to understand the pandemic response of the two emerging variants. First, we served comparative genomics, such as genome sequence submission patterns, mutational landscapes, and structural landscapes of significant mutations (N501Y, D614G, L452R, E484Q, and P681R). Second, we performed evolutionary epidemiology using molecular phylogenetics, scatter plots of the cluster evaluation, country-wise transmission pattern, and frequency pattern. Third, the receptor binding pattern was analyzed using the Wuhan reference strain and the other two variants. RESULTS: The study analyzed the country-wise and region-wise genome sequences and their submission pattern, molecular phylogenetics, scatter plot of the cluster evaluation, country-wise geographical distribution and transmission pattern, frequency pattern, entropy diversity, and mutational landscape of the two variants. The structural pattern was analyzed in the N501Y, D614G L452R, E484Q, and P681R mutations. The study found increased molecular interactivity between hACE2-RBD binding of B.1.1.7 and B.1.617.2 compared to the Wuhan reference strain. Our receptor binding analysis showed a similar indication pattern for hACE2-RBD of these two variants. However, B.1.617.2 offers slightly better stability in the hACE2-RBD binding pattern through MD simulation than B.1.1.7. CONCLUSION: The increased hACE2-RBD binding pattern of B.1.1.7 and B.1.617.2 might help to increase the infectivity compared to the Wuhan reference strain.


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , COVID-19/epidemiología , Genómica , Humanos , Mutación , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Reino Unido/epidemiología
8.
Indian J Med Res ; 155(1): 148-155, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35313427

RESUMEN

Background & objectives: The pandemic of SARS-COV-2 began in Wuhan, China in December 2019 and has caused more than 101 million cases worldwide. Diagnostic technologies possessing sensitivity and specificity equivalent to real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) assays are needed to ramp up testing capacity in most countries. Newer platforms need to be technically less demanding, require minimum equipment and reduce turn-around time for reporting results. The objective of this study was to exploit loop-mediated isothermal amplification (LAMP) for the detection of SARS-CoV-2 and evaluate its performance by comparison with rRT-PCR. Methods: Reverse-transcription LAMP (RT-LAMP) assay primers were designed to detect envelop (E) and nucleocapsid (N) genes of SARS-CoV-2. Positive control RNA was prepared by in vitro transcription of E and N genes clones. RT-LAMP amplification reactions were incubated at 65°C for 30 min. Results were recorded visually. RT-LAMP results were evaluated by comparing the results obtained with a commercial rRT-PCR kit. Results: The RT-LAMP assay for E and N genes was carried out in separate tubes. RT-LAMP detected about 40 copies of SARS-CoV-2 RNA per reaction. A total of 253 throat swabs were tested using the RT-LAMP assay. The overall diagnostic sensitivity and specificity of the LAMP assay were 98.46 and 100 per cent, respectively, as compared to the rRT-PCR. Interpretation & conclusions: SARS-CoV-2 RT-LAMP assay was designed, standardized and evaluated. The assay showed diagnostic sensitivity and specificity equivalent to rRT-PCR assays. The assay will be useful to increase testing capacity for the detection of SARS-CoV-2 in the country.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral/genética , SARS-CoV-2/genética , Sensibilidad y Especificidad
9.
Curr Mol Med ; 22(7): 594-607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34514998

RESUMEN

Cluster of differentiation (CD155), formerly identified as poliovirus receptor (PVR) and later as immunoglobulin molecule, is involved in cell adhesion, proliferation, invasion and migration. It is a surface protein expressed mostly on normal and transformed malignant cells. The expression of the receptor varies based on the origin of tissue. The expression of the protein is determined by factors involved in the sonic hedgehog pathway, Ras-MEK-ERK pathway and during stressful conditions like DNA damage response. The protein uses an alternate splicing mechanism, producing four isoforms, two being soluble (CD155ß and CD155γ) and two being transmembrane protein (CD155α and CD155δ). Apart from being a viral receptor, researchers have identified CD155 to play important roles in cancer research and the cell signaling field. The receptor is recognized as a biomarker for identifying cancerous tissue. The receptor interacts with molecules involved in the cells' defense mechanism. The immunesurveillance role of CD155 is being deciphered to understand the mechanistic approach it utilizes as an onco-immunologic molecule. CD155 is a non-MHC-I ligand which helps in identifying non-self to NK cells via an inhibitory TIGIT ligand. The TIGIT-CD155 pathway is a novel MHC-I-independent education mechanism for cell tolerance and activation of NK cells. The receptor also has a role in metastasis of cancer and transendothelial mechanism. In this review, the authors discuss the virus-host interaction that occurs via a single transmembrane receptor, the poliovirus infection pathway, which is being exploited as a therapeutic pathway. The oncolytic virotherapy is now a promising modality for curing cancer.


Asunto(s)
Proteínas Hedgehog , Neoplasias , Humanos , Ligandos , Neoplasias/genética , Neoplasias/terapia , Receptores Inmunológicos/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo
10.
Sci Rep ; 11(1): 23485, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873200

RESUMEN

Silicosis is an irreversible, incurable and progressive occupational disease caused by prolonged exposure to crystalline-silica dust while working in the relevant industries. Conventionally diagnosis is done by chest radiology, often in an advanced stage as early symptoms often go unnoticed. Early detection and necessary intervention (secondary prevention) could be a realistic possible control strategy for controlling silicosis as no effective treatment is available to stop and/or reverse the pathological process. Additionally, these patients are also vulnerable to pulmonary tuberculosis, which often becomes difficult to treat and with uncertain treatment outcome. Considering India has a huge burden of silicosis and silico-tuberculosis, a rapid and inexpensive screening method was realized to be an urgent need for early detection of silicosis among silica dust exposed workers. Serum club cell protein 16 (CC16) is evidenced to be a useful proxy screening marker for early detection of silicosis as evidenced from the recent research work of ICMR-National Institute of Occupational Health (ICMR-NIOH), India. In this study a lateral-flow assay for semi-quantitative estimation of serum CC16 level was developed. The detection was performed using gold nanoparticles conjugated anti-CC16 monoclonal antibodies. A sum of 106 serum samples was tested to do the performance evaluation of the assay. A concentration of 6 ng/ml or less produced one band, 6.1-9 ng/ml produced two bands, while more than 9 ng/ml produced all the three bands at the test zone. The sensitivity of the assay was 100% while the specificity was 95%. This assay may be used as a sensitive tool for periodic screening of silica dust exposed vulnerable workers for early detection of silicosis in them.


Asunto(s)
Exposición Profesional/efectos adversos , Silicosis/sangre , Silicosis/diagnóstico , Tuberculosis Pulmonar/sangre , Tuberculosis Pulmonar/diagnóstico , Uteroglobina/sangre , Biomarcadores/sangre , Polvo , Diagnóstico Precoz , Oro/administración & dosificación , Humanos , India , Nanopartículas del Metal/administración & dosificación , Enfermedades Profesionales/sangre , Enfermedades Profesionales/inducido químicamente , Enfermedades Profesionales/diagnóstico , Salud Laboral , Sistemas de Atención de Punto , Tuberculosis Pulmonar/inducido químicamente
11.
Front Physiol ; 9: 1275, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364155

RESUMEN

Diabetic cardiomyopathy is a leading cause of heart failure. Developing a novel therapeutic strategy for diabetic cardiomyopathy and characterizing animal models used for diabetes mellitus (DM) are important. Insulin 2 mutant (Ins2+/-) Akita is a spontaneous, genetic, mouse model for T1DM, which is relevant to humans. There are contrasting reports on systolic dysfunction and pathological remodeling (hypertrophy and fibrosis) in Akita heart. Here, we used magnetic resonance imaging (MRI) approach, a gold standard reference for evaluating cardiac function, to measure ejection fraction (indicator of systolic dysfunction) in Akita. Moreover, we performed Wheat Germ Agglutinin (WGA) and hematoxylin and Eosin stainings to determine cardiac hypertrophy, and Masson's Trichrome and picrosirius red stainings to determine cardiac fibrosis in Akita. MiR-133a, an anti-hypertrophy and anti-fibrosis miRNA, is downregulated in Akita heart. We determined if miR-133a mimic treatment could mitigate systolic dysfunction and remodeling in Akita heart. Our MRI results revealed decreased ejection fraction in Akita as compared to WT and increased ejection fraction in miR-133a mimic-treated Akita. We also found that miR-133a mimic treatment mitigates T1DM-induced cardiac hypertrophy and fibrosis in Akita. We conclude that Akita shows cardiac hypertrophy, fibrosis and systolic dysfunction and miR-133a mimic treatment to Akita could ameliorate them.

12.
Adv Exp Med Biol ; 1056: 47-59, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29754174

RESUMEN

Prevalence of diabetes mellitus (DM), a multifactorial disease often diagnosed with high blood glucose levels, is rapidly increasing in the world. Association of DM with multi-organ dysfunction including cardiomyopathy makes it a leading cause of morbidity and mortality. There are two major types of DM: type 1 DM (T1D) and type 2 DM (T2D). T1D is diagnosed by reduced levels of insulin and high levels of glucose in the blood. It is caused due to pancreatic beta cell destruction/loss, and mostly found in juveniles (juvenile DM). T2D is diagnosed by increased levels of insulin and glucose in the blood. It is caused due to insulin receptor dysfunction, and mostly found in the adults (adult DM). Both T1D and T2D impair cardiac muscle function, which is referred to as diabetic cardiomyopathy. We and others have reported that miRNAs, a novel class of tiny non-coding regulatory RNAs, are differentially expressed in the diabetic heart and they contribute to diabetic cardiomyopathy. Here, we elaborated the biogenesis of miRNA, how miRNA regulates a gene, cardioprotective roles of different miRNAs including miRNAs present in exosomes, underlying molecular mechanisms by which miRNA ameliorates diabetic cardiomyopathy, and the role of miRNA as a potential therapeutic target for juvenile and adult diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas/terapia , MicroARNs/genética , Terapia Molecular Dirigida/métodos , Adulto , Niño , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Exosomas/genética , Exosomas/metabolismo , Fibrosis , Regulación de la Expresión Génica , Humanos , Inflamación , Resistencia a la Insulina , MicroARNs/antagonistas & inhibidores , MicroARNs/biosíntesis , MicroARNs/uso terapéutico , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Interferencia de ARN
13.
Sci Rep ; 7(1): 3639, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28623294

RESUMEN

Hydrogen sulfide (H2S), a cardioprotective gas, is endogenously produced from homocysteine by cystathionine beta synthase (CBS) and cystathionine gamma lyase (CSE) enzymes. However, effect of H2S or homocysteine on CBS and CSE expression, and cross-talk between CBS and CSE are unclear. We hypothesize that homocysteine and H2S regulate CBS and CSE expressions in a dose dependent manner in cardiomyocytes, and CBS deficiency induces cardiac CSE expression. To test the hypothesis, we treated murine atrial HL1 cardiomyocytes with increasing doses of homocysteine or Na2S/GYY4137, a H2S donor, and measured the levels of CBS and CSE. We found that homocysteine upregulates CSE but downregulates CBS whereas Na2S/GYY4137 downregulates CSE but upregulates CBS in a dose-dependent manner. Moreover, the Na2S-treatment downregulates specificity protein-1 (SP1), an inducer for CSE, and upregulates miR-133a that targets SP1 and inhibits cardiomyocytes hypertrophy. Conversely, in the homocysteine-treated cardiomyocytes, CBS and miR-133a were downregulated and hypertrophy was induced. In vivo studies using CBS+/-, a model for hyperhomocysteinemia, and sibling CBS+/+ control mice revealed that deficiency of CBS upregulates cardiac CSE, plausibly by inducing SP1. In conclusion, we revealed a novel mechanism for H2S-mediated regulation of homocysteine metabolism in cardiomyocytes, and a negative feedback regulation between CBS and CSE in the heart.


Asunto(s)
Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Retroalimentación Fisiológica , Homocisteína/farmacología , Sulfuro de Hidrógeno/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Regiones no Traducidas 3' , Animales , Cistationina/metabolismo , Cistationina betasintasa/genética , Cistationina gamma-Liasa/genética , Relación Dosis-Respuesta a Droga , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Modelos Biológicos , Interferencia de ARN
14.
Artículo en Inglés | MEDLINE | ID: mdl-28439258

RESUMEN

The heart possesses a remarkable inherent capability to adapt itself to a wide array of genetic and extrinsic factors to maintain contractile function. Failure to sustain its compensatory responses results in cardiac dysfunction, leading to cardiomyopathy. Diabetic cardiomyopathy (DCM) is characterized by left ventricular hypertrophy and reduced diastolic function, with or without concurrent systolic dysfunction in the absence of hypertension and coronary artery disease. Changes in substrate metabolism, oxidative stress, endoplasmic reticulum stress, formation of extracellular matrix proteins, and advanced glycation end products constitute the early stage in DCM. These early events are followed by steatosis (accumulation of lipid droplets) in cardiomyocytes, which is followed by apoptosis, changes in immune responses with a consequent increase in fibrosis, remodeling of cardiomyocytes, and the resultant decrease in cardiac function. The heart is an omnivore, metabolically flexible, and consumes the highest amount of ATP in the body. Altered myocardial substrate and energy metabolism initiate the development of DCM. Diabetic hearts shift away from the utilization of glucose, rely almost completely on fatty acids (FAs) as the energy source, and become metabolically inflexible. Oxidation of FAs is metabolically inefficient as it consumes more energy. In addition to metabolic inflexibility and energy inefficiency, the diabetic heart suffers from impaired calcium handling with consequent alteration of relaxation-contraction dynamics leading to diastolic and systolic dysfunction. Sarcoplasmic reticulum (SR) plays a key role in excitation-contraction coupling as Ca2+ is transported into the SR by the SERCA2a (sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a) during cardiac relaxation. Diabetic cardiomyocytes display decreased SERCA2a activity and leaky Ca2+ release channel resulting in reduced SR calcium load. The diabetic heart also suffers from marked downregulation of novel cardioprotective microRNAs (miRNAs) discovered recently. Since immune responses and substrate energy metabolism are critically altered in diabetes, the present review will focus on immunometabolism and miRNAs.

15.
Stem Cell Rev Rep ; 13(1): 79-91, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27807762

RESUMEN

Stem cell therapy (SCT) raises the hope for cardiac regeneration in ischemic hearts. However, underlying molecular mechanisms for repair of dead myocardium by SCT in the ischemic heart is poorly understood. Growing evidences suggest that cardiac matrix stiffness and differential expressions of miRNAs play a crucial role in stem cell survival and differentiation. However, their roles on transplanted stem cells, for myocardial repair of the ischemic heart, remain unclear. Transplanted stem cells may act in an autocrine and/or paracrine manner to regenerate the dead myocardium. Paracrine mediators such as stem cell-derived exosomes are emerging as a novel therapeutic strategy to overcome some of the limitations of SCT. These exosomes carry microRNAs (miRNAs) that may regulate stem cell differentiation into a specific lineage. MicroRNAs may also contribute to stiffness of surrounding matrix by regulating extracellular matrix (ECM) turnover. The survival of transplanted stem cell depends on its autophagic process that maintains cellular homeostasis. Therefore, exosomes, miRNAs, extracellular matrix turnover, and autophagy may have an integral role in improving the efficacy of SCT. This review elaborates the specific roles of these regulatory components on cardiac regeneration in the ischemic heart during SCT.


Asunto(s)
Autofagia , Exosomas/metabolismo , Matriz Extracelular/metabolismo , Corazón/fisiopatología , MicroARNs/genética , Regeneración , Células Madre/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Exosomas/genética , Humanos , Miocardio/patología , Trasplante de Células Madre/métodos , Células Madre/citología
16.
Indian J Med Res ; 144(1): 38-45, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27834324

RESUMEN

BACKGROUND & OBJECTIVES: It is important to understand the role of cell surface receptors in susceptibility to infectious diseases. CD155 a member of the immunoglobulin super family, serves as the poliovirus receptor (PVR). Heterozygous (Ala67Thr) polymorphism in CD155 has been suggested as a risk factor for paralytic outcome of poliovirus infection. The present study pertains to the development of a screening test to detect the single nucleotide (SNP) polymorphism in the CD155 gene. METHODS: New primers were designed for PCR, sequencing and SNP analysis of Exon2 of CD155 gene. DNAs extracted from either whole blood (n=75) or cells from oral cavity (n=75) were used for standardization and validation of the SNP assay. DNA sequencing was used as the gold standard method. RESULTS: A new SNP assay for detection of heterozygous Ala67Thr genotype was developed and validated by testing 150 DNA samples. Heterozygous CD155 was detected in 27.33 per cent (41/150) of DNA samples tested by both SNP detection assay and sequencing. INTERPRETATION & CONCLUSIONS: The SNP detection assay was successfully developed for identification of Ala67Thr polymorphism in human PVR/CD155 gene. The SNP assay will be useful for large scale screening of DNA samples.


Asunto(s)
Poliomielitis/genética , Poliovirus/genética , Receptores Virales/genética , Análisis de Secuencia de ADN/métodos , Genotipo , Heterocigoto , Humanos , Poliomielitis/diagnóstico , Polimorfismo de Nucleótido Simple , Receptores Virales/aislamiento & purificación
17.
Diabetes ; 65(10): 3075-90, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27411382

RESUMEN

MicroRNAs (miRNAs) have a fundamental role in diabetic heart failure. The cardioprotective miRNA-133a (miR-133a) is downregulated, and contractility is decreased in diabetic hearts. Norepinephrine (NE) is a key catecholamine that stimulates contractility by activating ß-adrenergic receptors (ß-AR). NE is synthesized from tyrosine by the rate-limiting enzyme, tyrosine hydroxylase (TH), and tyrosine is catabolized by tyrosine aminotransferase (TAT). However, the cross talk/link between TAT and TH in the heart is unclear. To determine whether miR-133a plays a role in the cross talk between TH and TAT and regulates contractility by influencing NE biosynthesis and/or ß-AR levels in diabetic hearts, Sprague-Dawley rats and miR-133a transgenic (miR-133aTg) mice were injected with streptozotocin to induce diabetes. The diabetic rats were then treated with miR-133a mimic or scrambled miRNA. Our results revealed that miR-133a mimic treatment improved the contractility of the diabetic rat's heart concomitant with upregulation of TH, cardiac NE, ß-AR, and downregulation of TAT and plasma levels of NE. In miR-133aTg mice, cardiac-specific miR-133a overexpression prevented upregulation of TAT and suppression of TH in the heart after streptozotocin was administered. Moreover, miR-133a overexpression in CATH.a neuronal cells suppressed TAT with concomitant upregulation of TH, whereas knockdown and overexpression of TAT demonstrated that TAT inhibited TH. Luciferase reporter assay confirmed that miR-133a targets TAT. In conclusion, miR-133a controls the contractility of diabetic hearts by targeting TAT, regulating NE biosynthesis, and consequently, ß-AR and cardiac function.


Asunto(s)
MicroARNs/metabolismo , Contracción Miocárdica/fisiología , Miocardio/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Tirosina Transaminasa/metabolismo , Animales , Western Blotting , Diabetes Mellitus Experimental/metabolismo , Células HEK293 , Hemodinámica/fisiología , Humanos , Inmunohistoquímica , Masculino , Ratones Transgénicos , MicroARNs/genética , MicroARNs/fisiología , Contracción Miocárdica/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tirosina 3-Monooxigenasa/genética , Tirosina Transaminasa/genética
18.
Front Physiol ; 7: 93, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014091

RESUMEN

Elevated expression and activity of matrix metalloproteinase-9 (MMP9) and decreased contractility of cardiomyocytes are documented in diabetic hearts. However, it is unclear whether MMP is involved in the regulation of contractility of cardiomyocytes in diabetic hearts. In the present study, we tested the hypothesis that MMP9 regulates contractility of cardiomyocytes in diabetic hearts, and ablation of MMP9 prevents impaired contractility of cardiomyocytes in diabetic hearts. To determine the specific role of MMP9 in cardiomyocyte contractility, we used 12-14 week male WT (normoglycemic sibling of Akita), Akita, and Ins(2+∕-)/MMP9(-∕-) (DKO) mice. DKO mice were generated by cross-breeding male Ins2(+∕-) Akita (T1D) with female MMP9 knockout (MMP9(-∕-)) mice. We isolated cardiomyocytes from the heart of the above three groups of mice and measured their contractility and calcium transients. Moreover, we determined mRNA and protein levels of sarco-endoplasmic reticulum calcium ATPase-2a (SERCA-2a), which is involved in calcium handling during contractility of cardiomyocytes in WT, Akita, and DKO hearts using QPCR, Western blotting and immunoprecipitation, respectively. Our results revealed that in Akita hearts where increased expression and activity of MMP9 is reported, the rates of shortening and re-lengthening (±dL/dt) of cardiomyocytes were decreased, time to 90% peak height and baseline during contractility was increased, rate of calcium decay was increased, and calcium transient was decreased as compared to WT cardiomyocytes. However, these changes in Akita were blunted in DKO cardiomyocytes. The molecular analyses of SERCA-2a in the hearts showed that it was downregulated in Akita as compared to WT but was comparatively upregulated in DKO. These results suggest that abrogation of MMP9 gene prevents contractility of cardiomyocytes, possibly by increasing SERCA-2a and calcium transients. We conclude that MMP9 plays a crucial role in the regulation of contractility of cardiomyocytes in diabetic hearts.

19.
Am J Transl Res ; 7(4): 683-96, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26064437

RESUMEN

Autophagy is ubiquitous in all forms of heart failure and cardioprotective miR-133a is attenuated in human heart failure. Previous reports from heart failure patients undergoing left ventricular assist device (LVAD) implantation demonstrated that autophagy is upregulated in the LV of the failing human heart. Studies in the murine model show that diabetes downregulates miR-133a. However, the role of miR-133a in the regulation of autophagy in diabetic hearts is unclear. We tested the hypothesis that diabetes exacerbates cardiac autophagy by inhibiting miR-133a in heart failure patients undergoing LVAD implantation. The miRNA assay was performed on the LV of 15 diabetic (D) and 6 non-diabetic (ND) heart failure patients undergoing LVAD implantation. Four ND with highly upregulated and 5 D with highly downregulated miR-133a were analyzed for autophagy markers (Beclin1, LC3B, ATG3) and their upstream regulators (mTOR and AMPK), and hypertrophy marker (beta-myosin heavy chain) by RT-qPCR, Western blotting and immunofluorescence. Our results demonstrate that attenuation of miR-133a in diabetic hearts is associated with the induction of autophagy and hypertrophy, and suppression of mTOR without appreciable difference in AMPK activity. In conclusion, attenuation of miR-133a contributes to the exacerbation of diabetes mediated cardiac autophagy and hypertrophy in heart failure patients undergoing LVAD implantation.

20.
J Nat Sci ; 1(4)2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25879081

RESUMEN

Heart is the first organ formed during organogenesis. The fetal heart undergoes several structural and functional modifications to form the four-chambered mammalian heart. The adult heart shows different adaptations during compensatory and decompensatory heart failure. However, one common adaptation in the pathological heart is fetal reprogramming, where the adult heart expresses several genes and miRNAs which are active in the fetal stage. The fetal reprogramming in the failing heart raises several questions, such as whether the switch of adult to fetal genetic programming is an adaptive response to cope with adverse remodeling of the heart, does the expression of fetal genes protect the heart during compensatory and/or decompensatory heart failure, does repressing the fetal gene in the failing heart is protective to the heart? To answer these questions, we need to understand the expression of genes and miRNAs that are reprogrammed in the failing heart. In view of this, we provided an overview of differentially expressed genes and miRNAs, and their regulation in this review. Further, we elaborated novel strategies for a plausible future therapy of cardiovascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...