Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050362

RESUMEN

This paper reports the development of ZnO NRs/rGO-based photocatalysts integrated into a tree-branched polymer-based microfluidic reactor for efficient photodegradation of water contaminants. The reactor system includes a photocatalytic reactor, tree-branched microfluidic channels, and ZnO nanorods (NRs) coated with reduced graphene oxide (rGO) on a glass substrate within an area of 0.6 × 0.6 cm2. The ZnO NRs/rGO acts as a photocatalyst layer grown hydrothermally and then spray-coated with rGO. The microfluidic system is made of PDMS and fabricated using soft lithography (micro molding using SU-8 master mold patterned on a silicon wafer). The device geometry is designed using AutoCAD software and the flow properties of the microfluidics are simulated using COMSOL Multiphysics. The microfluidic platform's photocatalytic process aims to bring the nanostructured photocatalyst into very close proximity to the water flow channel, reducing the interaction time and providing effective purification performance. Our functionality test showed that a degradation efficiency of 23.12 %, within the effective residence time of less than 3 s was obtained.

2.
Polymers (Basel) ; 15(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36850079

RESUMEN

In this work, we present a process for converting olive industry solid waste (OISW) into a value-added material with ionic receptors for use in the removal of toxic metal ions from wastewater. This 3D polymer is a promising adsorbent for large-scale application, since it is a low-cost material made from agricultural waste and showed exceptional performance. The synthesis of the network polymer involved the carboxymethylation of OISW and curing of the carboxymethylated OISW at an elevated temperature to promote the formation of ester linkages between OISW's components. FT-IR, atomic force microscopy, and thermal analysis were performed on the crosslinked product. The adsorption efficiency of the crosslinked carboxymethylated OISW toward Pb(II), Cu(II), and other toxic metal ions present in sewage was evaluated as a function of adsorbent dose, temperature, pH, time, and initial metal ion. The percentage removal of about 20 metal ions present in a sewage sample collected from a sewer plant located in the Palestinian Territories was determined. The adsorption efficiency did not drop even after six cycles of use. The kinetic study showed that the adsorption process follows the Langmuir isotherm model and the second-order adsorption rate. The experimental Qe values of 13.91 and 13.71 mg/g were obtained for Pb(II) and Cu(II) removal, respectively. The thermodynamic results confirm the spontaneous metal bonding to the receptor sites of the crosslinked carboxymethylated OISW.

3.
Membranes (Basel) ; 12(3)2022 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35323746

RESUMEN

A large amount of wastewater is directly discharged into water bodies without treatment, causing surface water contamination. A rotating biological contactor (RBC) is an attached biological wastewater treatment process that offers a low energy footprint. However, its unstable removal efficiency makes it less popular. This study optimized operating parameters in RBC combined with external membrane filtration (RBC-ME), in which the latter acted as a post-treatment step to stabilize the biological performance. Response surface methodology (RSM) was employed to optimize the biological and filtration performance by exploiting three parameters, namely disk rotation, hydraulic retention time (HRT), and sludge retention time (SRT). Results show that the RBC-ME exhibited superior biological treatment capacity and higher effluent quality compared to stand-alone RBC. It attained 87.9 ± 3.2% of chemical oxygen demand, 45.2 ± 0.7% total nitrogen, 97.9 ± 0.1% turbidity, and 98.9 ± 1.1% ammonia removals. The RSM showed a good agreement between the model and the experimental data. The maximum permeability of 144.6 L/m2 h bar could be achieved under the optimum parameters of 36.1 rpm disk rotation, 18 h HRT, and 14.9 d SRT. This work demonstrated the effective use of statistical modeling to enhance RBC-ME system performance to obtain a sustainable and energy-efficient condition.

4.
Membranes (Basel) ; 11(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34832104

RESUMEN

Tapioca processing industries are very popular in the rural community to produce a variety of foods as the end products. Due to their small scales and scattered locations, they require robust modular systems to operate at low capacity with minimum supervision. This study explores the application of a novel sequencing batch-integrated fixed-film activated sludge membrane (SB-IFASM) process to treat tapioca processing wastewater for reuse purposes. The SB-IFASM employed a gravity-driven system and utilizes biofilm to enhance biodegradation without requiring membrane cleaning. The SB-IFASM utilizes the biofilm as a secondary biodegradation stage to enhance the permeate quality applicable for reuse. A lab-scale SB-IFASM was developed, preliminarily assessed, and used to treat synthetic tapioca processing industry wastewater. The results of short-term filtration tests showed the significant impact of hydrostatic pressure on membrane compaction and instant cake layer formation. Increasing the pressure from 2.2 to 10 kPa lowered the permeability of clean water and activated sludge from 720 to 425 and from 110 to 50 L/m2·h bar, respectively. The unsteady-state operation of the SB-IFASM showed the prominent role of the bio-cake in removing the organics reaching the permeate quality suitable for reuse. High COD removals of 63-98% demonstrated the prominence contribution of the biofilm in enhancing biological performance and ultimate COD removals of >93% make it very attractive for application in small-scale tapioca processing industries. However, the biological ecosystem was unstable, as shown by foaming that deteriorated permeability and was detrimental to the organic removal. Further developments are still required, particularly to address the biological stability and low permeability.

5.
ACS Appl Mater Interfaces ; 7(5): 3009-17, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25608579

RESUMEN

Tungsten trioxide (WO3) displays excellent performance in solar-related material applications. However, this material is rare and expensive. Therefore, developing efficient materials using smaller amounts of WO3 is inevitable. In this study, we investigated how to create high photocatalytic performance of WO3 particles containing platinum (Pt, as a co-catalyst) and homogeneously spherical macropores (as a medium to enable access of large molecules and light penetration into the remote internal regions of the catalyst). The present particles were prepared by spray drying of a precursor solution containing WO3 nanoparticles, Pt solution, and polystyrene (PS) spheres (as a colloidal template). Photocatalytic studies showed that changes in particle morphology (from dense with smooth surfaces, to dense with rough surfaces, to porous structures) and added Pt effectively improved the photocatalytic performance over WO3 nanoparticles. Our results showed that the best precursor (prepared using a PS/WO3 mass ratio of 0.32 and containing Pt co-catalyst) provided WO3 particles with a photocatalytic rate of more than 5 times that of pure 10 nm WO3 nanoparticles. Moreover, the catalyst can be effectively recycled without an apparent decrease in its photocatalytic activity. The experimental results were also supported by a proposal mechanism of the photocatalytic reaction phenomenon.

6.
ACS Appl Mater Interfaces ; 6(6): 4418-27, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24555959

RESUMEN

Control of the shell structural properties [i.e., thickness (8-25 nm) and morphology (dense and raspberry)] and cavity diameter (100-350 nm) of hollow particles was investigated experimentally, and the results were qualitatively explained based on the available theory. We found that the selective deposition size and formation of the shell component on the surface of a core template played important roles in controlling the structure of the resulting shell. To achieve the selective deposition size and formation of the shell component, various process parameters (i.e., reaction temperature and charge, size, and composition of the core template and shell components) were tested. Magnesium fluoride (MgF2) and polystyrene spheres were used as models for shell and core components, respectively. MgF2 was selected because, to the best of our knowledge, the current reported approaches to date were limited to synthesis of MgF2 in film and particle forms only. Therefore, understanding how to control the formation of MgF2 with various structures (both the thickness and morphology) is a prospective for advanced lens synthesis and applications.


Asunto(s)
Fluoruros/química , Compuestos de Magnesio/química , Nanotecnología/instrumentación , Tamaño de la Partícula , Rosácea , Propiedades de Superficie
7.
Langmuir ; 29(43): 13152-61, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24138547

RESUMEN

Studies on self-assembly of colloidal nanoparticles during formation of nanostructured particles by spray-drying methods have attracted a large amount of attention. Understanding the self-assembly phenomenon allows the creation of creative materials with unique structures that may offer performance improvements in a variety of applications. However, current research on the self-assembly of colloidal nanoparticles have been conducted only on uncharged droplet systems. In this report, we first investigated the self-assembly processes of charged colloidal nanoparticles in charged droplets during spray-drying. Silica nanoparticles and polystyrene spheres are used as a model system. To induce a positive or a negative charge on the droplets, we used an electrospray method. Repulsive and attractive interactions between charged colloidal nanoparticles and droplet surface are found to control the self-assembly of colloidal nanoparticles inside the charged droplet. Interestingly, self-assembly of colloidal nanoparticles inside charged droplets under various processing parameters (i.e., droplet charge, droplet diameter, and surface charge, size, and composition of colloidal nanoparticles) allows the formation of unique nanostructured particles, including porous and hollow particles with control over the internal structure, external shape, number of hollow cavities, and shell thickness, in which this level of control cannot be achieved using conventional spray-drying method.

8.
Langmuir ; 29(21): 6262-70, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23634706

RESUMEN

Studies on preparation of porous material have attracted tremendous attention because existence of pores can provide material with excellent performances. However, current preparation reports described successful production of porous material with only partial information on charges, interactions, sizes, and compositions of the template and host materials. In this report, influences of self-assembly parameters (i.e., surface charge, size, and concentration of colloidal nanoparticles) on self-organized porous material fabrication were investigated. Silica nanoparticles (as a host material) and polystyrene (PS) spheres (as a template) were combined to produce self-assembly porous materials in film and particle forms. The experimental results showed that the porous structure and pore size were controllable and strongly depended on the self-assembly parameters. Materials containing highly ordered pores were effectively created only when process parameters fall within appropriate conditions (i.e., PS surface charge ≤ -30 mV; silica-to-PS size ratio ≤0.078; and silica-to-PS mass ratio of about 0.50). The investigation of the self-assembly parameter landscape was also completed using geometric considerations. Because optimization of these parameters provides significant information in regard to practical uses, results of this report could be relevant to other functional properties.


Asunto(s)
Nanopartículas/química , Poliestirenos/química , Dióxido de Silicio/química , Coloides/química , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
9.
J Colloid Interface Sci ; 389(1): 134-46, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23058978

RESUMEN

The formation of mesopore-free silica shell with homogenous shell thickness, smooth surface, and controllable thickness in the nanometer range (from 4 to 12 nm) on core material was studied. Cationic polystyrene particles with various sizes (ranged from 80 to 300 nm) were used as a model of core material, which could be effective to support the electrostatic attraction between the core material and the negatively charged silica without any additives. Different from other reports, mesopore-free shell was produced due to the absence of additive. Basic amino acid (i.e., lysine) was used as a catalyst for forming the silica, which is harmless and able to control the silica growth and produce shell with smooth surface. Homogenous thin shell (thickness <13 nm) with nanometer-scale-controllable was reported, while in the current reports, the modification of the shell in this thickness range was typically difficult and relating to the formation of incomplete/inhomogeneous silica coating and rough surface. The relationships among the reaction parameters were also investigated in detail along with the theoretical consideration and the proposal of the silica coating formation mechanism. The present mesopore-free silica shell was efficiently used for various applications because of their tendency not to adsorb large molecules, as confirmed by the nitrogen sorption and large molecule adsorption analysis.

10.
Langmuir ; 28(23): 8616-24, 2012 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-22587437

RESUMEN

Mesopore-free hollow silica particles with a spherical shape, smooth surface, and controllable diameter (from 80 to 300 nm) and shell thickness (from 2 to 25 nm) were successfully prepared using an additive-free synthesis method. Different from other hollow particle developments, a mesopore-free shell was produced because of the absence of additive. Although common reports pointed out the importance of the additional additive in pasting and growing silica on the surface of a template, here we preferred to exploit the effect of the template charge in gaining the silica coating process. To form the silica, basic amino acid (i.e., lysine) was used as a catalyst to replace ammonia or hydrazine, which is harmless and able to control the silica growth and produce hollow particles with smooth surfaces. Control of the particle diameter was drastically achieved by altering the size of the template. The flexibility of the process in controlling the shell thickness was predominantly attained by varying the compositions of the reactants (i.e., silica source and catalyst). The present mesopore-free hollow particles could be efficiently used for various applications, especially for thermal insulator and optical devices because of their tendency not to adsorb large molecules, as confirmed by adsorption analysis.

11.
Langmuir ; 26(14): 12260-6, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20557055

RESUMEN

Magnesium fluoride particles with controllable size (from several nanometers to submicrometers) and morphology (spherical and cubic forms) were successfully prepared via liquid-phase synthesis. The particles were synthesized from the reaction of MgCl(2) and NH(4)F in an aqueous solution at 75 degrees C for 1 h under a nitrogen atmosphere. Control of particle size was accomplished mainly by changing the concentration of the reactants, which could be qualitatively explained by conventional nucleation theory. Flexibility of the process in controlling particle morphology, from a spherical to a cubical form, was predominantly achieved by varying the concentration of MgCl(2). Since the same XRD pattern was detected in particles with varying morphologies, the shape transformation was due to changes in particle growth. With the ability to control particle size and morphology, the creation of other inorganic particles is possible and has potential for many field applications.

12.
Acta Biomater ; 5(4): 1027-34, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19114316

RESUMEN

Hyaluronic acid (HA) porous particles with controllable porosity and pore size, ranging from 100 to 300 nm, were successfully prepared using a colloidal templating and spray-drying method. HA powder and polystyrene latex (PSL) particles, which were used as the precursor and templating agent, respectively, were mixed in aqueous solution and spray-dried using a two-fluid nozzle system to produce HA and PSL composite particles. Water was evaporated during spray-drying using heated air with a temperature of 120 degrees C. This simple process was completed within several seconds. The prepared particles were collected and washed with an organic solvent to dissolve the PSL templating agent. The porosity and pore size of the resulting particles were easily controlled by changing the initial mass ratio of precursor to templating agent, i.e., HA to PSL, and by altering the size of the PSL template particles.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/métodos , Ácido Hialurónico/química , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA