Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1863(11): 129405, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31376411

RESUMEN

BACKGROUND: Nucleoid associated proteins (NAPs) are essential for chromosome condensation in bacterial cells. Despite being a diverse group, NAPs share two common traits: they are small, oligomeric proteins and their oligomeric state is critical for DNA condensation. Streptomyces coelicolor IHF (sIHF) is an actinobacterial-specific nucleoid-associated protein that despite its name, shares neither sequence nor structural homology with the well-characterized Escherichia coli IHF. Like E. coli IHF, sIHF is needed for efficient nucleoid condensation, morphological development and antibiotic production in S. coelicolor. METHODS: Using a combination of crystallography, small-angle X-ray scattering, electron microscopy and structure-guided functional assays, we characterized how sIHF binds and remodels DNA. RESULTS: The structure of sIHF bound to DNA revealed two DNA-binding elements on opposite surfaces of the helix bundle. Using structure-guided functional assays, we identified an additional surface that drives DNA binding in solution. Binding by each element is necessary for both normal development and antibiotic production in vivo, while in vitro, they act collectively to restrain negative supercoils. CONCLUSIONS: The cleft defined by the N-terminal and the helix bundle of sIHF drives DNA binding, but the two additional surfaces identified on the crystal structure are necessary to stabilize binding, remodel DNA and maintain wild-type levels of antibiotic production. We propose a model describing how the multiple DNA-binding elements enable oligomerization-independent nucleoid condensation. GENERAL SIGNIFICANCE: This work provides a new dimension to the mechanistic repertoire ascribed to bacterial NAPs and highlights the power of combining structural biology techniques to study sequence unspecific protein-DNA interactions.


Asunto(s)
ADN Bacteriano/química , Factores de Integración del Huésped/química , Streptomyces coelicolor/química , Sitios de Unión , Cristalografía por Rayos X , Conformación Proteica en Hélice alfa
2.
Autophagy ; 13(12): 2018-2027, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28976798

RESUMEN

Although the human ULK complex mediates phagophore initiation similar to the budding yeast Saccharomyces cerevisiae Atg1 complex, this complex contains ATG101 but not Atg29 and Atg31. Here, we analyzed the fission yeast Schizosaccharomyces pombe Atg1 complex, which has a subunit composition that resembles the human ULK complex. Our pairwise coprecipitation experiments showed that while the interactions between Atg1, Atg13, and Atg17 are conserved, Atg101 does not bind Atg17. Instead, Atg101 interacts with the HORMA domain of Atg13 and this enhances the stability of both proteins. We also found that S. pombe Atg17, the putative scaffold subunit, adopts a rod-shaped structure with no discernible curvature. Interestingly, S. pombe Atg17 binds S. cerevisiae Atg13, Atg29, and Atg31 in vitro, but it cannot complement the function of S. cerevisiae Atg17 in vivo. Furthermore, S. pombe Atg101 cannot substitute for the function of S. cerevisiae Atg29 and Atg31 in vivo. Collectively, our work generates new insights into the subunit organization and structural properties of an Atg101-containing Atg1/ULK complex.


Asunto(s)
Secuencia Conservada , Complejos Multiproteicos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/ultraestructura
3.
Nucleic Acids Res ; 41(7): 4171-84, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23427309

RESUMEN

Effective chromosome organization is central to the functioning of any cell. In bacteria, this organization is achieved through the concerted activity of multiple nucleoid-associated proteins. These proteins are not, however, universally conserved, and different groups of bacteria have distinct subsets that contribute to chromosome architecture. Here, we describe the characterization of a novel actinobacterial-specific protein in Streptomyces coelicolor. We show that sIHF (SCO1480) associates with the nucleoid and makes important contributions to chromosome condensation and chromosome segregation during Streptomyces sporulation. It also affects antibiotic production, suggesting an additional role in gene regulation. In vitro, sIHF binds DNA in a length-dependent but sequence-independent manner, without any obvious structural preferences. It does, however, impact the activity of topoisomerase, significantly altering DNA topology. The sIHF-DNA co-crystal structure reveals sIHF to be composed of two domains: a long N-terminal helix and a C-terminal helix-two turns-helix domain with two separate DNA interaction sites, suggesting a potential role in bridging DNA molecules.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Streptomyces coelicolor/genética , Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Segregación Cromosómica , ADN-Topoisomerasas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Eliminación de Gen , Conformación de Ácido Nucleico , Esporas Bacterianas/fisiología , Streptomyces coelicolor/crecimiento & desarrollo , Streptomyces coelicolor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA