Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Atmos Chem Phys ; 24(8): 4949-4972, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-38846712

RESUMEN

The design of emission abatement measures to effectively reduce high ground-level ozone (O3) concentrations in urban areas is very complex. In addition to the strongly non-linear chemistry of this secondary pollutant, precursors can be released by a variety of sources in different regions, and locally produced O3 is mixed with that transported from the regional or continental scales. All of these processes depend also on the specific meteorological conditions and topography of the study area. Consequently, high-resolution comprehensive modeling tools are needed to understand the drivers of photochemical pollution and to assess the potential of local strategies to reduce adverse impacts from high tropospheric O3 levels. In this study, we apply the Integrated Source Apportionment Method (ISAM) implemented in the Community Multiscale Air Quality (CMAQ v5.3.2) model to investigate the origin of summertime O3 in the Madrid region (Spain). Consistent with previous studies, our results confirm that O3 levels are dominated by non-local contributions, representing around 70 % of mean values across the region. Nonetheless, precursors emitted by local sources, mainly road traffic, play a more important role during O3 peaks, with contributions as high as 25 ppb. The potential impact of local measures is higher under unfavorable meteorological conditions associated with regional accumulation patterns. These findings suggest that this modeling system may be used in the future to simulate the potential outcomes of specific emission abatement measures to prevent high-O3 episodes in the Madrid metropolitan area.

2.
J Geophys Res Atmos ; 127(16): 0, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36275858

RESUMEN

Several locations across the United States in non-compliance with the national standard for ground-level ozone (O3) are thought to have sizeable influences from distant extra-regional emission sources or natural stratospheric O3, which complicates design of local emission control measures. To quantify the amount of long-range transported O3 (LRT O3), its origin, and change over time, we conduct and analyze detailed sensitivity calculations characterizing the response of O3 to emissions from different source regions across the Northern Hemisphere in conjunction with multi-decadal simulations of tropospheric O3 distributions and changes. Model calculations show that the amount of O3 at any location attributable to sources outside North America varies both spatially and seasonally. On a seasonal-mean basis, during 1990-2010, LRT O3 attributable to international sources steadily increased by 0.06-0.2 ppb yr-1 at locations across the United States and arose from superposition of unequal and contrasting trends in individual source-region contributions, which help inform attribution of the trend evident in O3 measurements. Contributions of emissions from Europe steadily declined through 2010, while those from Asian emissions increased and remained dominant. Steadily rising NOx emissions from international shipping resulted in increasing contributions to LRT O3, comparable to those from Asian emissions in recent years. Central American emissions contribute a significant fraction of LRT O3 in southwestern United States. In addition to the LRT O3 attributable to emissions outside of North America, background O3 across the continental United States is comprised of a sizeable and spatially variable fraction that is of stratospheric origin (29-78%).

3.
Geosci Model Dev ; 14: 2867-2897, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34676058

RESUMEN

The Community Multiscale Air Quality (CMAQ) model version 5.3 (CMAQ53), released to the public in August 2019 and followed by version 5.3.1 (CMAQ531) in December 2019, contains numerous science updates, enhanced functionality, and improved computation efficiency relative to the previous version of the model, 5.2.1 (CMAQ521). Major science advances in the new model include a new aerosol module (AERO7) with significant updates to secondary organic aerosol (SOA) chemistry, updated chlorine chemistry, updated detailed bromine and iodine chemistry, updated simple halogen chemistry, the addition of dimethyl sulfide (DMS) chemistry in the CB6r3 chemical mechanism, updated M3Dry bidirectional deposition model, and the new Surface Tiled Aerosol and Gaseous Exchange (STAGE) bidirectional deposition model. In addition, support for the Weather Research and Forecasting (WRF) model's hybrid vertical coordinate (HVC) was added to CMAQ53 and the Meteorology-Chemistry Interface Processor (MCIP) version 5.0 (MCIP50). Enhanced functionality in CMAQ53 includes the new Detailed Emissions Scaling, Isolation and Diagnostic (DESID) system for scaling incoming emissions to CMAQ and reading multiple gridded input emission files. Evaluation of CMAQ531 was performed by comparing monthly and seasonal mean daily 8 h average (MDA8) O3 and daily PM2.5 values from several CMAQ531 simulations to a similarly configured CMAQ521 simulation encompassing 2016. For MDA8 O3, CMAQ531 has higher O3 in the winter versus CMAQ521, due primarily to reduced dry deposition to snow, which strongly reduces wintertime O3 bias (2-4 ppbv monthly average). MDA8 O3 is lower with CMAQ531 throughout the rest of the year, particularly in spring, due in part to reduced O3 from the lateral boundary conditions (BCs), which generally increases MDA8 O3 bias in spring and fall ( 0.5 µg m-3). For daily 24 h average PM2.5, CMAQ531 has lower concentrations on average in spring and fall, higher concentrations in summer, and similar concentrations in winter to CMAQ521, which slightly increases bias in spring and fall and reduces bias in summer. Comparisons were also performed to isolate updates to several specific aspects of the modeling system, namely the lateral BCs, meteorology model version, and the deposition model used. Transitioning from a hemispheric CMAQ (HCMAQ) version 5.2.1 simulation to a HCMAQ version 5.3 simulation to provide lateral BCs contributes to higher O3 mixing ratios in the regional CMAQ simulation in higher latitudes during winter (due to the decreased O3 dry deposition to snow in CMAQ53) and lower O3 mixing ratios in middle and lower latitudes year-round (due to reduced O3 over the ocean with CMAQ53). Transitioning from WRF version 3.8 to WRF version 4.1.1 with the HVC resulted in consistently higher (1.0-1.5 ppbv) MDA8 O3 mixing ratios and higher PM2.5 concentrations (0.1-0.25 µg m-3) throughout the year. Finally, comparisons of the M3Dry and STAGE deposition models showed that MDA8 O3 is generally higher with M3Dry outside of summer, while PM2.5 is consistently higher with STAGE due to differences in the assumptions of particle deposition velocities to non-vegetated surfaces and land use with short vegetation (e.g., grasslands) between the two models. For ambient NH3, STAGE has slightly higher concentrations and smaller bias in the winter, spring, and fall, while M3Dry has higher concentrations and smaller bias but larger error and lower correlation in the summer.

4.
Geosci Model Dev ; 14(9): 5751-5768, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35350842

RESUMEN

The state-of-the-science Community Multiscale Air Quality (CMAQ) Modeling System has recently been extended for hemispheric-scale modeling applications (referred to as H-CMAQ). In this study, satellite-constrained estimation of the degassing SO2 emissions from 50 volcanoes over the Northern Hemisphere is incorporated into H-CMAQ, and their impact on tropospheric sulfate aerosol ( SO 4 2 - ) levels is assessed for 2010. The volcanic degassing improves predictions of observations from the Acid Deposition Monitoring Network in East Asia (EANET), the United States Clean Air Status and Trends Network (CASTNET), and the United States Integrated Monitoring of Protected Visual Environments (IMPROVE). Over Asia, the increased SO 4 2 - concentrations were seen to correspond to the locations of volcanoes, especially over Japan and Indonesia. Over the USA, the largest impacts that occurred over the central Pacific were caused by including the Hawaiian Kilauea volcano, while the impacts on the continental USA were limited to the western portion during summertime. The emissions of the Soufrière Hills volcano located on the island of Montserrat in the Caribbean Sea affected the southeastern USA during the winter season. The analysis at specific sites in Hawaii and Florida also confirmed improvements in regional performance for modeled SO 4 2 - by including volcanoes SO2 emissions. At the edge of the western USA, monthly averaged SO 4 2 - enhancements greater than 0.1µgm-3 were noted within the boundary layer (defined as surface to 750hPa) during June- September. Investigating the change on SO 4 2 - concentration throughout the free troposphere revealed that although the considered volcanic SO2 emissions occurred at or below the middle of free troposphere (500hPa), compared to the simulation without the volcanic source, SO 4 2 - enhancements of more than 10% were detected up to the top of the free troposphere (250hPa). Our model simulations and comparisons with measurements across the Northern Hemisphere indicate that the degassing volcanic SO2 emissions are an important source and should be considered in air quality model simulations assessing background SO 4 2 - levels and their source attribution.

5.
Geosci Model Dev ; 13(7): 2925-2944, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-33343831

RESUMEN

We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis, source attribution, optimal pollution control, data assimilation, and inverse modeling. The science processes of the CMAQ model include gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and advection. Discrete adjoints are implemented for all the science processes, with an additional continuous adjoint for advection. The development of discrete adjoints is assisted with algorithmic differentiation (AD) tools. Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase and aqueous chemistry, and two different automatic differentiation tools are used for other processes such as clouds, aerosols, diffusion, and advection. The continuous adjoint of advection is developed manually. For adjoint validation, the brute-force or finite-difference method (FDM) is implemented process by process with box- or column-model simulations. Due to the inherent limitations of the FDM caused by numerical round-off errors, the complex variable method (CVM) is adopted where necessary. The adjoint model often shows better agreement with the CVM than with the FDM. The adjoints of all science processes compare favorably with the FDM and CVM. In an example application of the full multiphase adjoint model, we provide the first estimates of how emissions of particulate matter (PM2.5) affect public health across the US.

6.
Atmos Chem Phys ; 20(6): 3397-3413, 2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32328090

RESUMEN

The state-of-the-science Community Multiscale Air Quality (CMAQ) modeling system, which has recently been extended for hemispheric-scale modeling applications (referred to as H-CMAQ), is applied to study the trans-Pacific transport, a phenomenon recognized as a potential source of air pollution in the US, during April 2010. The results of this analysis are presented in two parts. In the previous paper (Part 1), model evaluation for tropospheric ozone (O3) was presented and an air mass characterization method was developed. Results from applying this newly established method pointed to the importance of emissions as the factor to enhance the surface O3 mixing ratio over the US. In this subsequent paper (Part 2), emission impacts are examined based on mathematically rigorous sensitivity analysis using the higher-order decoupled direct method (HDDM) implemented in H-CMAQ. The HDDM sensitivity coefficients indicate the presence of a NO x -sensitive regime during April 2010 over most of the Northern Hemisphere. By defining emission source regions over the US and east Asia, impacts from these emission sources are examined. At the surface, during April 2010, the emission impacts of the US and east Asia are comparable over the western US with a magnitude of about 3ppbv impacts on monthly mean O3 all-hour basis, whereas the impact of domestic emissions dominates over the eastern US with a magnitude of about 10ppbv impacts on monthly mean O3. The positive correlation (r = 0.63) between surface O3 mixing ratios and domestic emission impacts is confirmed. In contrast, the relationship between surface O3 mixing ratios and emission impacts from east Asia exhibits a flat slope when considering the entire US. However, this relationship has strong regional differences between the western and eastern US; the western region exhibits a positive correlation (r = 0.36-0.38), whereas the latter exhibits a flat slope (r <0.1). Based on the comprehensive evaluation of H-CMAQ, we extend the sensitivity analysis for O3 aloft. The results reveal the significant impacts of emissions from east Asia on the free troposphere (defined as 750 to 250hPa) over the US (impacts of more than 5ppbv) and the dominance of stratospheric air mass on upper model layer (defined as 250 to 50hPa) over the US (impacts greater than 10ppbv). Finally, we estimate changes of trans-Pacific transport by taking into account recent emission trends from 2010 to 2015 assuming the same meteorological condition. The analysis suggests that the impact of recent emission changes on changes in the contribution of trans-Pacific transport to US O3 levels was insignificant at the surface level and was small (less than 1ppbv) over the free troposphere.

7.
Sci Total Environ ; 651(Pt 1): 456-465, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30243165

RESUMEN

Deposition and accumulation of aerosol particles on photovoltaics (PV) panels, which is commonly referred to as "soiling of PV panels," impacts the performance of the PV energy system. It is desirable to estimate the soiling effect at different locations and times for modeling the PV system performance and devising cost-effective mitigation. This study presents an approach to estimate the soiling effect by utilizing particulate matter (PM) dry deposition estimates from air quality model simulations. The Community Multiscale Air Quality (CMAQ) modeling system used in this study was developed by the U.S. Environmental Protection Agency (U.S. EPA) for air quality assessments, rule-making, and research. Three deposition estimates based on different surface roughness length parameters assumed in CMAQ were used to illustrate the soling effect in different land-use types. The results were analyzed for three locations in the U.S. for year 2011. One urban and one suburban location in Colorado were selected because there have been field measurements of particle deposition on solar panels and analysis on the consequent soiling effect performed at these locations. The third location is a coastal city in Texas, the City of Brownsville. These three locations have distinct ambient environments. CMAQ underestimates particle deposition by 40% to 80% when compared to the field measurements at the two sites in Colorado due to the underestimations in both the ambient PM10 concentration and deposition velocity. The estimated panel transmittance sensitivity due to the deposited particles is higher than the sensitivity obtained from the measurements in Colorado. The final soiling effect, which is transmittance loss, is estimated as 3.17 ±â€¯4.20% for the Texas site, 0.45 ±â€¯0.33%, and 0.31 ±â€¯0.25% for the Colorado sites. Although the numbers are lower compared to the measurements in Colorado, the results are comparable with the soiling effects observed in U.S.

8.
Sci Total Environ ; 627: 523-533, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29426175

RESUMEN

Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also for forecasting purposes. Ground and airborne measurements from a recent field experiment in the Pacific Northwest focused on cropland residue burning was used to evaluate model performance in capturing surface and aloft impacts from the burning events. The Community Multiscale Air Quality (CMAQ) model was used to simulate multiple crop residue burns with 2 km grid spacing using field-specific information and also more general assumptions traditionally used to support National Emission Inventory based assessments. Field study specific information, which includes area burned, fuel consumption, and combustion completeness, resulted in increased biomass consumption by 123 tons (60% increase) on average compared to consumption estimated with default methods in the National Emission Inventory (NEI) process. Buoyancy heat flux, a key parameter for model predicted fire plume rise, estimated from fuel loading obtained from field measurements can be 30% to 200% more than when estimated using default field information. The increased buoyancy heat flux resulted in higher plume rise by 30% to 80%. This evaluation indicates that the regulatory air quality modeling system can replicate intensity and transport (horizontal and vertical) features for crop residue burning in this region when region-specific information is used to inform emissions and plume rise calculations. Further, previous vertical emissions allocation treatment of putting all cropland residue burning in the surface layer does not compare well with measured plume structure and these types of burns should be modeled more similarly to prescribed fires such that plume rise is based on an estimate of buoyancy.

9.
J Geophys Res Atmos ; 122(24): 13545-13572, 2017 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30245953

RESUMEN

The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high-ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozone (O3) and volatile organic compound (VOC) measurements across the basin. Contrary to other wintertime Uinta Basin studies, predicted nitrogen oxides (NO x ) were typically low compared to measurements. Increases to oil and gas VOC emissions resulted in O3 predictions closer to observations, and nighttime O3 improved when reducing the deposition velocity for all chemical species. Vertical structures of these pollutants were similar to observations on multiple days. However, the predicted surface layer VOC mixing ratios were generally found to be underestimated during the day and overestimated at night. While temperature profiles compared well to observations, WRF was found to have a warm temperature bias and too low nighttime mixing heights. Analyses of more realistic snow heat capacity in WRF to account for the warm bias and vertical mixing resulted in improved temperature profiles, although the improved temperature profiles seldom resulted in improved O3 profiles. While additional work is needed to investigate meteorological impacts, results suggest that the uncertainty in the oil and gas emissions contributes more to the underestimation of O3. Further, model adjustments based on a single site may not be suitable across all sites within the basin.

10.
Geosci Model Dev ; 10(4): 1703-1732, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30147852

RESUMEN

The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system developed and maintained by the US Environmental Protection Agency's (EPA) Office of Research and Development (ORD). Recently, version 5.1 of the CMAQ model (v5.1) was released to the public, incorporating a large number of science updates and extended capabilities over the previous release version of the model (v5.0.2). These updates include the following: improvements in the meteorological calculations in both CMAQ and the Weather Research and Forecast (WRF) model used to provide meteorological fields to CMAQ, updates to the gas and aerosol chemistry, revisions to the calculations of clouds and photolysis, and improvements to the dry and wet deposition in the model. Sensitivity simulations isolating several of the major updates to the modeling system show that changes to the meteorological calculations result in enhanced afternoon and early evening mixing in the model, periods when the model historically underestimates mixing. This enhanced mixing results in higher ozone (O3) mixing ratios on average due to reduced NO titration, and lower fine particulate matter (PM2.5) concentrations due to greater dilution of primary pollutants (e.g., elemental and organic carbon). Updates to the clouds and photolysis calculations greatly improve consistency between the WRF and CMAQ models and result in generally higher O3 mixing ratios, primarily due to reduced cloudiness and attenuation of photolysis in the model. Updates to the aerosol chemistry result in higher secondary organic aerosol (SOA) concentrations in the summer, thereby reducing summertime PM2.5 bias (PM2.5 is typically underestimated by CMAQ in the summer), while updates to the gas chemistry result in slightly higher O3 and PM2.5 on average in January and July. Overall, the seasonal variation in simulated PM2.5 generally improves in CMAQv5.1 (when considering all model updates), as simulated PM2.5 concentrations decrease in the winter (when PM2.5 is generally overestimated by CMAQ) and increase in the summer (when PM2.5 is generally underestimated by CMAQ). Ozone mixing ratios are higher on average with v5.1 vs. v5.0.2, resulting in higher O3 mean bias, as O3 tends to be overestimated by CMAQ throughout most of the year (especially at locations where the observed O3 is low); however, O3 correlation is largely improved with v5.1. Sensitivity simulations for several hypothetical emission reduction scenarios show that v5.1 tends to be slightly more responsive to reductions in NO x (NO + NO2), VOC and SO x (SO2 + SO4) emissions than v5.0.2, representing an improvement as previous studies have shown CMAQ to underestimate the observed reduction in O3 due to large, widespread reductions in observed emissions.

11.
Environ Sci Technol ; 49(7): 4362-71, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25729920

RESUMEN

Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, which provides source-receptor relationships at highly resolved sectoral, spatial, and temporal scales. While damage resulting from anthropogenic emissions of BC is strongly correlated with population and premature death, we found little correlation between damage and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damage resulting from anthropogenic BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. Overall, these results show the value of the high-resolution source attribution for determining the locations, seasons, and sectors for which BC emission controls have the most effective health benefits.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Modelos Teóricos , Mortalidad Prematura , Hollín/efectos adversos , Emisiones de Vehículos/toxicidad , Monitoreo del Ambiente , Gasolina/efectos adversos , Humanos , Estaciones del Año , Estados Unidos
12.
Environ Sci Technol ; 48(1): 464-73, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24245475

RESUMEN

Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004-February 2005) provided an unprecedented opportunity to diagnostically evaluate the results of a numerical air quality model. Previous analyses of these measurements demonstrated excellent mass closure for the variety of contributing sources. In this study, a carbon-apportionment version of the Community Multiscale Air Quality (CMAQ) model was used to track primary organic and elemental carbon emissions from 15 independent sources such as mobile sources and biomass burning in addition to four precursor-specific classes of secondary organic aerosol (SOA) originating from isoprene, terpenes, aromatics, and sesquiterpenes. Conversion of the source-resolved model output into organic tracer concentrations yielded a total of 2416 data pairs for comparison with observations. While emission source contributions to the total model bias varied by season and measurement location, the largest absolute bias of -0.55 µgC/m(3) was attributed to insufficient isoprene SOA in the summertime CMAQ simulation. Biomass combustion was responsible for the second largest summertime model bias (-0.46 µgC/m(3) on average). Several instances of compensating errors were also evident; model underpredictions in some sectors were masked by overpredictions in others.


Asunto(s)
Contaminantes Atmosféricos/análisis , Aire/normas , Carbono/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos/análisis , Material Particulado/análisis , Aerosoles , Biomasa , Medio Oeste de Estados Unidos , Modelos Teóricos , Estaciones del Año
13.
Environ Sci Technol ; 47(5): 2304-13, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23256562

RESUMEN

In setting primary ambient air quality standards, the EPA's responsibility under the law is to establish standards that protect public health. As part of the current review of the ozone National Ambient Air Quality Standard (NAAQS), the US EPA evaluated the health exposure and risks associated with ambient ozone pollution using a statistical approach to adjust recent air quality to simulate just meeting the current standard level, without specifying emission control strategies. One drawback of this purely statistical concentration rollback approach is that it does not take into account spatial and temporal heterogeneity of ozone response to emissions changes. The application of the higher-order decoupled direct method (HDDM) in the community multiscale air quality (CMAQ) model is discussed here to provide an example of a methodology that could incorporate this variability into the risk assessment analyses. Because this approach includes a full representation of the chemical production and physical transport of ozone in the atmosphere, it does not require assumed background concentrations, which have been applied to constrain estimates from past statistical techniques. The CMAQ-HDDM adjustment approach is extended to measured ozone concentrations by determining typical sensitivities at each monitor location and hour of the day based on a linear relationship between first-order sensitivities and hourly ozone values. This approach is demonstrated by modeling ozone responses for monitor locations in Detroit and Charlotte to domain-wide reductions in anthropogenic NOx and VOCs emissions. As seen in previous studies, ozone response calculated using HDDM compared well to brute-force emissions changes up to approximately a 50% reduction in emissions. A new stepwise approach is developed here to apply this method to emissions reductions beyond 50% allowing for the simulation of more stringent reductions in ozone concentrations. Compared to previous rollback methods, this application of modeled sensitivities to ambient ozone concentrations provides a more realistic spatial response of ozone concentrations at monitors inside and outside the urban core and at hours of both high and low ozone concentrations.


Asunto(s)
Contaminantes Atmosféricos/análisis , Atmósfera/química , Monitoreo del Ambiente/métodos , Modelos Teóricos , Ozono/análisis , Humanos , Estados Unidos
14.
Environ Sci Technol ; 46(14): 7604-11, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22769063

RESUMEN

Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level ozone concentrations. A Bayesian hierarchical model is used to combine air quality model output and monitoring data in order to characterize the impact of emissions reductions while accounting for different degrees of uncertainty in the modeled emissions inputs. The probabilistic model predictions are weighted based on population density in order to better quantify the societal benefits/disbenefits of four hypothetical emission reduction scenarios in which domain-wide NO(x) emissions from various sectors are reduced individually and then simultaneously. Cross validation analysis shows the statistical model performs well compared to observed ozone levels. Accounting for the variability and uncertainty in the emissions and atmospheric systems being modeled is shown to impact how emission reduction scenarios would be ranked, compared to standard methodology.


Asunto(s)
Contaminación del Aire/prevención & control , Modelos Teóricos , Contaminantes Atmosféricos/análisis , Teorema de Bayes , Bases de Datos como Asunto , Ozono/química , Estándares de Referencia , Reproducibilidad de los Resultados , Estaciones del Año
15.
Environ Sci Technol ; 44(22): 8553-60, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20883028

RESUMEN

Numerous scientific upgrades to the representation of secondary organic aerosol (SOA) are incorporated into the Community Multiscale Air Quality (CMAQ) modeling system. Additions include several recently identified SOA precursors: benzene, isoprene, and sesquiterpenes; and pathways: in-cloud oxidation of glyoxal and methylglyoxal, particle-phase oligomerization, and acid enhancement of isoprene SOA. NO(x)-dependent aromatic SOA yields are also added along with new empirical measurements of the enthalpies of vaporization and organic mass-to-carbon ratios. For the first time, these SOA precursors, pathways and empirical parameters are included simultaneously in an air quality model for an annual simulation spanning the continental U.S. Comparisons of CMAQ-modeled secondary organic carbon (OC(sec)) with semiempirical estimates screened from 165 routine monitoring sites across the U.S. indicate the new SOA module substantially improves model performance. The most notable improvement occurs in the central and southeastern U.S. where the regionally averaged temporal correlations (r) between modeled and semiempirical OC(sec) increase from 0.5 to 0.8 and 0.3 to 0.8, respectively, when the new SOA module is employed. Wintertime OC(sec) results improve in all regions of the continental U.S. and the seasonal and regional patterns of biogenic SOA are better represented.


Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/química , Monitoreo del Ambiente/métodos , Modelos Químicos , Transición de Fase
16.
Environ Sci Technol ; 43(7): 2388-93, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19452891

RESUMEN

Because all models are a simplification of the phenomenon they aim to represent, it is often more useful to estimate the probability of an event rather than a single "best" model result. Previous air quality ensemble approaches have used computationally expensive simulations of separately developed modeling systems. We present an efficient method to generate ensembles with hundreds of members based on several structural configurations of a single air quality modeling system. We use the Decoupled Direct Method in three dimensions to directly calculate how ozone concentrations change as a result of changes in input parameters. The modeled probability estimate is compared to observations and is shown to have a high level of skill and improved resolution and sharpness. This approach can help resolve the practical limits of incorporating uncertainty estimation into deterministic air quality management modeling applications.


Asunto(s)
Ozono/análisis , Probabilidad , Incertidumbre
17.
Environ Sci Technol ; 42(13): 4670-5, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18677989

RESUMEN

Responses of ozone and PM2.5 to emission changes are coupled because of interactions between their precursors. Here we show the interdependencies of ozone and PM2.5 responses to emission changes in 2001 and 2050, with the future case accounting for both currently planned emission controls and climate change. Current responses of ozone and PM2.5 to emissions are quantified and linked on a daily basis for five cities in the continental United States: Atlanta, Chicago, Houston, Los Angeles, and NewYork. Reductions in anthropogenic NO(x) emissions decrease 24-h average PM2.5 levels but may either increase or decrease daily maximum 8-h average ozone levels. Regional ozone maxima for all the cities are more sensitive to NO(x) reductions than at the city center, particularly in New York and Chicago. Planned controls of anthropogenic NO(x) emissions lead to more positive responses to NO(x) reductions in the future. Sensitivities of ozone and PM2.5 to anthropogenic VOC emissions are predicted to decrease between 2001 and 2050. Ammonium nitrate formation is predicted to be less ammonia-sensitive in 2050 than 2001 while the opposite is true for ammonium sulfate. Sensitivity of PM2.5 to SO2 and NO(x) emissions changes little between 2001 and 2050. Both ammonium sulfate and ammonium nitrate are predicted to decrease in sensitivity to SO2 and NO(x) emissions between 2001 and 2050. The complexities, linkages, and daily changes in the pollutant responses to emission changes suggest that strategies developed to meet specific air quality standards should consider other air quality impacts as well.


Asunto(s)
Contaminantes Atmosféricos/análisis , Ciudades , Monitoreo del Ambiente/estadística & datos numéricos , Modelos Teóricos , Ozono/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Monitoreo del Ambiente/métodos , Óxido Nítrico/análisis , Estados Unidos
18.
Environ Sci Technol ; 41(11): 3997-4003, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17612181

RESUMEN

An approach is developed and tested to extend discrete, source-based sensitivity results to provide a complete set of information for source-air quality impacts, including inversion of those results to develop receptor-oriented source-impact sensitivities. First, the decoupled direct sensitivity analysis method in 3D (DDM-3D) is used to calculate a finite number of forward sensitivities from discrete points. These results are then interpolated using tessellation to provide complete fields of forward, emissions-based sensitivities, i.e., how emissions in any one grid cell within the domain impact any other cell. Receptor-oriented sensitivities are then found by inverting the set of forward sensitivities and can be used to identify the area of influence (AOI). This economically provides results similar to what would be found using an adjoint model. The present approach is computationally less intensive than adjoint modeling for a large number of receptors, and provides both source-oriented and receptor-oriented pollutant response fields that can be used for air quality management and health impact analyses. The forward sensitivity interpolation procedure, as well as the receptor-oriented sensitivities, is evaluated using data withholding.


Asunto(s)
Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Modelos Químicos , Georgia , Estados Unidos
19.
Environ Sci Technol ; 41(24): 8355-61, 2007 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18200863

RESUMEN

Impact of climate change alone and in combination with currently planned emission control strategies are investigated to quantify effectiveness in decreasing regional ozone and PM2.5 over the continental U.S. using MM5, SMOKE, and CMAQ with DDM-3D. Sensitivities of ozone and PM2.5 formation to precursor emissions are found to change only slightly in response to climate change. In many cases, mass per ton sensitivities to NO(x) and SO2 controls are predicted to be greater in the future due to both the lower emissions as well as climate, suggesting that current control strategies based on reducing such emissions will continue to be effective in decreasing ground-level ozone and PM2.5 concentrations. SO2 emission controls are predicted to be most beneficial for decreasing summertime PM2.5 levels, whereas controls of NO(x) emissions are effective in winter. Spatial distributions of sensitivities are also found to be only slightly affected assuming no changes in land-use. Contributions of biogenic VOC emissions to PM2.5 formation are simulated to be more important in the future because of higher temperatures, higher biogenic emissions, and lower anthropogenic NO(x) and SO2 emissions.


Asunto(s)
Clima , Ozono/química , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...