Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(5): 3959-3985, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38427954

RESUMEN

Chitinase-3-like-1 (CHI3L1), also known as YKL-40, is a glycoprotein linked to inflammation, fibrosis, and cancer. This study explored CHI3L1's interactions with various oligosaccharides using microscale thermophoresis (MST) and AlphaScreen (AS). These investigations guided the development of high-throughput screening assays to assess interference of small molecules in binding between CHI3L1 and biotinylated small molecules or heparan sulfate-based probes. Small molecule binders of YKL-40 were identified in our chitotriosidase inhibitors library with MST and confirmed through X-ray crystallography. Based on cocrystal structures of potent hit compounds with CHI3L1, small molecule probes 19 and 20 were designed for an AS assay. Structure-based optimization led to compounds 30 and 31 with nanomolar activities and drug-like properties. Additionally, an orthogonal AS assay using biotinylated heparan sulfate as a probe was developed. The compounds' affinity showed a significant correlation in both assays. These screening tools and compounds offer novel avenues for investigating the role of CHI3L1.


Asunto(s)
Quitinasas , Proteína 1 Similar a Quitinasa-3 , Glicoproteínas , Ensayos Analíticos de Alto Rendimiento , Heparitina Sulfato
2.
Mol Cancer Ther ; 22(7): 807-817, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36939275

RESUMEN

Pharmacologic inhibition of the controlling immunity pathway enzymes arginases 1 and 2 (ARG1 and ARG2) is a promising strategy for cancer immunotherapy. Here, we report the discovery and development of OATD-02, an orally bioavailable, potent arginases inhibitor. The unique pharmacologic properties of OATD-02 are evidenced by targeting intracellular ARG1 and ARG2, as well as long drug-target residence time, moderate to high volume of distribution, and low clearance, which may jointly provide a weapon against arginase-related tumor immunosuppression and ARG2-dependent tumor cell growth. OATD-02 monotherapy had an antitumor effect in multiple tumor models and enhanced an efficacy of the other immunomodulators. Completed nonclinical studies and human pharmacokinetic predictions indicate a feasible therapeutic window and allow for proposing a dose range for the first-in-human clinical study in patients with cancer. SIGNIFICANCE: We have developed an orally available, small-molecule intracellular arginase 1 and 2 inhibitor as a potential enhancer in cancer immunotherapy. Because of its favorable pharmacologic properties shown in nonclinical studies, OATD-02 abolishes tumor immunosuppression induced by both arginases, making it a promising drug candidate entering clinical trials.


Asunto(s)
Arginasa , Neoplasias , Humanos , Arginasa/metabolismo , Neoplasias/tratamiento farmacológico , Inmunoterapia
3.
J Med Chem ; 63(24): 15527-15540, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33078933

RESUMEN

Chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase) are the enzymatically active chitinases that have been implicated in the pathology of chronic lung diseases such as asthma and interstitial lung diseases (ILDs), including idiopathic pulmonary fibrosis (IPF) and sarcoidosis. The clinical and preclinical data suggest that pharmacological inhibition of CHIT1 might represent a novel therapeutic approach in IPF. Structural modification of an advanced lead molecule 3 led to the identification of compound 9 (OATD-01), a highly active CHIT1 inhibitor with both an excellent PK profile in multiple species and selectivity against a panel of other off-targets. OATD-01 given orally once daily in a range of doses between 30 and 100 mg/kg showed significant antifibrotic efficacy in an animal model of bleomycin-induced pulmonary fibrosis. OATD-01 is the first-in-class CHIT1 inhibitor, currently completed phase 1b of clinical trials, to be a potential treatment for IPF.


Asunto(s)
Quitinasas/antagonistas & inhibidores , Inhibidores Enzimáticos/uso terapéutico , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Piperidinas/química , Administración Oral , Animales , Sitios de Unión , Bleomicina/toxicidad , Dominio Catalítico , Quitinasas/metabolismo , Ensayos Clínicos Fase I como Asunto , Modelos Animales de Enfermedad , Perros , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Femenino , Semivida , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/patología , Pulmón/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Ratas , Relación Estructura-Actividad
4.
Bioorg Med Chem ; 28(23): 115741, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32992250

RESUMEN

The chemical cross-linking of complexes of proteins with nucleic acids is often used in structural and mechanistic studies of these oftentimes unstable and transient complexes. To date, no method has been reported for the thiol-based conjugation of proteins with an RNA backbone, mainly because of instability of the modified ribonucleic acid that is functionalized at the phosphodiester and its rapid hydrolysis. Here, we report the site-specific synthesis of stable RNA oligonucleotides with a thiol-bearing linker that was attached to the phosphodiester backbone, where the ribonucleotide at the cross-linking site was either replaced with 2'-deoxy- or 2'-fluororibonucleotide. The utility of this approach was validated in cross-linking tests with RNase H1, a model protein for RNA/DNA binding and key effector in DNA-like antisense drug therapy. Furthermore, scale-up cross-linking and purification of the complexes confirmed that the method is useful for obtaining preparations of protein-RNA/DNA complexes with purity and stability that are suitable for further biochemical and structural studies. The present approach broadens the repertoire of disulfide-based cross-linking strategies and is a novel tool for the stabilization of protein-RNA complexes in which the interaction occurs via the RNA backbone. This methodology may be broadly applicable to studies of otherwise unstable or transient complexes of proteins with RNA and RNA/DNA.


Asunto(s)
ARN/metabolismo , Ribonucleasa H/metabolismo , Secuencia de Bases , Reactivos de Enlaces Cruzados/química , Cistamina/química , Disulfuros/química , Humanos , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Oligonucleótidos/metabolismo , Unión Proteica , ARN/química , Ribonucleasa H/química , Ribonucleasa H/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...