Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 148: 107462, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38776650

RESUMEN

Imaging in the shortwave infrared (SWIR, 1000-1700 nm) region is gaining traction for biomedical applications, leading to an in-depth search for fluorophores emitting at these wavelengths. The development of SWIR emitters, to be used in vivo in biological media, is mostly hampered by the considerable lipophilicity of the structures, resulting from the highly conjugated scaffold required to shift the emission to this region, that limit their aqueous solubility. In this work, we have modulated a known SWIR emitter, named Flav7, by adding hydrophilic moieties to the flavylium scaffold and we developed a new series of Flav7-derivatives, which proved to be indeed more polar than the parent compound, but still not freely water-soluble. Optical characterization of these derivatives allowed us to select FlavMorpho, a new compound with improved emission properties compared to Flav7. Encapsulation of the two compounds in micelles resulted in water-soluble SWIR emitters, with FlavMorpho micelles being twice as emissive as Flav7 micelles. The SWIR emission extent of FlavMorpho micelles proved also superior to the tail-emission of Indocyanine Green (ICG), the FDA-approved reference cyanine, in the same region, by exciting the probes at their respective absorption maxima in phosphate buffered saline (PBS) solution. The availability of optical imaging devices equipped with lasers able to excite these dyes at their maximum of absorption in the SWIR region, could pave the way for implemented SWIR imaging results.

2.
PNAS Nexus ; 2(8): pgad250, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37575672

RESUMEN

Commercially available near-infrared (NIR) dyes, including indocyanine green (ICG), display an end-tail of the fluorescence emission spectrum detectable in the short-wave infrared (SWIR) window. Imaging methods based on the second NIR spectral region (1,000-1,700 nm) are gaining interest within the biomedical imaging community due to minimal autofluorescence and scattering, allowing higher spatial resolution and depth sensitivity. Using a SWIR fluorescence imaging device, the properties of ICG vs. heptamethine cyanine dyes with emission >800 nm were evaluated using tissue-simulating phantoms and animal experiments. In this study, we tested the hypothesis that an increased rigidity of the heptamethine chain may increase the SWIR imaging performance due to the bathochromic shift of the emission spectrum. Fluorescence SWIR imaging of capillary plastic tubes filled with dyes was followed by experiments on healthy animals in which a time series of fluorescence hindlimb images were analyzed. Our findings suggest that higher spatial resolution can be achieved even at greater depths (>5 mm) or longer wavelengths (>1,100 nm), in both tissue phantoms and animals, opening the possibility to translate the SWIR prototype toward clinical application.

3.
Cell Biol Toxicol ; 39(3): 795-811, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34519926

RESUMEN

Doxorubicin (Dox) is one of the most commonly used anthracyclines for the treatment of solid and hematological tumors such as B-/T cell acute lymphoblastic leukemia (ALL). Dox compromises topoisomerase II enzyme functionality, thus inducing structural damages during DNA replication and causes direct damages intercalating into DNA double helix. Eukaryotic cells respond to DNA damages by activating the ATM-CHK2 and/or ATR-CHK1 pathway, whose function is to regulate cell cycle progression, to promote damage repair, and to control apoptosis. We evaluated the efficacy of a new drug schedule combining Dox and specific ATR (VE-821) or CHK1 (prexasertib, PX) inhibitors in the treatment of human B-/T cell precursor ALL cell lines and primary ALL leukemic cells. We found that ALL cell lines respond to Dox activating the G2/M cell cycle checkpoint. Exposure of Dox-pretreated ALL cell lines to VE-821 or PX enhanced Dox cytotoxic effect. This phenomenon was associated with the abrogation of the G2/M cell cycle checkpoint with changes in the expression pCDK1 and cyclin B1, and cell entry in mitosis, followed by the induction of apoptosis. Indeed, the inhibition of the G2/M checkpoint led to a significant increment of normal and aberrant mitotic cells, including those showing tripolar spindles, metaphases with lagging chromosomes, and massive chromosomes fragmentation. In conclusion, we found that the ATR-CHK1 pathway is involved in the response to Dox-induced DNA damages and we demonstrated that our new in vitro drug schedule that combines Dox followed by ATR/CHK1 inhibitors can increase Dox cytotoxicity against ALL cells, while using lower drug doses. • Doxorubicin activates the G2/M cell cycle checkpoint in acute lymphoblastic leukemia (ALL) cells. • ALL cells respond to doxorubicin-induced DNA damages by activating the ATR-CHK1 pathway. • The inhibition of the ATR-CHK1 pathway synergizes with doxorubicin in the induction of cytotoxicity in ALL cells. • The inhibition of ATR-CHK1 pathway induces aberrant chromosome segregation and mitotic spindle defects in doxorubicin-pretreated ALL cells.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Proteínas Quinasas , Humanos , Proteínas Quinasas/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Doxorrubicina/farmacología , Daño del ADN , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
4.
J Exp Clin Cancer Res ; 41(1): 159, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35490245

RESUMEN

Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/genética , Humanos , Mitosis , Pronóstico
5.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34768772

RESUMEN

Current cytoreductive and antithrombotic strategies in MPNs are mostly based on cell counts and on patient's demographic and clinical history. Despite the numerous studies conducted on platelet function and on the role of plasma factors, an accurate and reliable method to dynamically quantify the hypercoagulability states of these conditions is not yet part of clinical practice. Starting from our experience, and after having sifted through the literature, we propose an in-depth narrative report on the contribution of the clonal platelets of MPNs-rich in tissue factor (TF)-in promoting a perpetual procoagulant mechanism. The whole process results in an unbalanced generation of thrombin and is self-maintained by Protease Activated Receptors (PARs). We chose to define this model as a "circulating wound", as it indisputably links the coagulation, inflammation, and fibrotic progression of the disease, in analogy with what happens in some solid tumours. The platelet contribution to thrombin generation results in triggering a vicious circle supported by the PARs/TGF-beta axis. PAR antagonists could therefore be a good option for target therapy, both to contain the risk of vascular events and to slow the progression of the disease towards end-stage forms. Both the new and old strategies, however, will require tools capable of measuring procoagulant or prohaemorrhagic states in a more extensive and dynamic way to favour a less empirical management of MPNs and their potential clinical complications.


Asunto(s)
Plaquetas/metabolismo , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/metabolismo , Trombina/biosíntesis , Animales , Bioensayo , Humanos , Leucemia Mieloide Crónica Atípica BCR-ABL Negativa/tratamiento farmacológico , Modelos Biológicos , Receptores Fibrinógenos/metabolismo , Trombina/antagonistas & inhibidores , Trombofilia/fisiopatología
6.
Leukemia ; 35(10): 2813-2826, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34193978

RESUMEN

Although targeting of cell metabolism is a promising therapeutic strategy in acute myeloid leukemia (AML), metabolic dependencies are largely unexplored. We aimed to classify AML patients based on their metabolic landscape and map connections between metabolic and genomic profiles. Combined serum and urine metabolomics improved AML characterization compared with individual biofluid analysis. At intracellular level, AML displayed dysregulated amino acid, nucleotide, lipid, and bioenergetic metabolism. The integration of intracellular and biofluid metabolomics provided a map of alterations in the metabolism of polyamine, purine, keton bodies and polyunsaturated fatty acids and tricarboxylic acid cycle. The intracellular metabolome distinguished three AML clusters, correlating with distinct genomic profiles: NPM1-mutated(mut), chromatin/spliceosome-mut and TP53-mut/aneuploid AML that were confirmed by biofluid analysis. Interestingly, integrated genomic-metabolic profiles defined two subgroups of NPM1-mut AML. One was enriched for mutations in cohesin/DNA damage-related genes (NPM1/cohesin-mut AML) and showed increased serum choline + trimethylamine-N-oxide and leucine, higher mutation load, transcriptomic signatures of reduced inflammatory status and better ex-vivo response to EGFR and MET inhibition. The transcriptional differences of enzyme-encoding genes between NPM1/cohesin-mut and NPM1-mut allowed in silico modeling of intracellular metabolic perturbations. This approach predicted alterations in NAD and purine metabolism in NPM1/cohesin-mut AML that suggest potential vulnerabilities, worthy of being therapeutically explored.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Daño del ADN/genética , Leucemia Mieloide Aguda/genética , Mutación/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Cromatina/genética , Femenino , Genómica/métodos , Humanos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Nucleofosmina , Pronóstico , Adulto Joven , Cohesinas
7.
Oncol Rep ; 44(4): 1561-1573, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32945487

RESUMEN

Tumor protein p53 is a key regulator of several cellular pathways, including DNA repair, cell cycle and angiogenesis. Kevetrin exhibits p53­dependent as well as­independent activity in solid tumors, while its effects on leukemic cells remain unknown. The aim of the present study was to analyze the response of acute myeloid leukemia (AML) cell lines (TP53 wild­type: OCI­AML3 and MOLM­13; and TP53­mutant: KASUMI­1 and NOMO­1) to kevetrin at a concentration range of 85­340 µM. The cellular and molecular effects of the treatment were analyzed in terms of cell growth, viability [Annexin V­propidium iodide (PI) staining] and cell cycle alterations (PI staining). Gene expression profiling, western blotting and immunofluorescence were performed to elucidate the pathways underlying kevetrin activity. Pulsed exposure exerted no effect on the wild­type cells, but was effective on mutant cells. After continuous treatment, significant cell growth arrest and apoptosis were observed in all cell lines, with TP53­mutant models displaying a higher sensitivity and p53 induction. Kevetrin also displayed efficacy against TP53 wild­type and mutant primary AML, with a preferential cytotoxic activity against blast cells. Gene expression profiling revealed a common core transcriptional program altered by drug exposure and the downregulation of glycolysis, DNA repair and unfolded protein response signatures. These findings suggest that kevetrin may be a promising therapeutic option for patients with both wild­type and TP53­mutant AML.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína p53 Supresora de Tumor/genética , Anciano , Anciano de 80 o más Años , Anexina A5/genética , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Mutación/efectos de los fármacos , Cultivo Primario de Células
8.
Br J Haematol ; 189(2): 335-338, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31792942

RESUMEN

This study was conducted to evaluate the expression of fibrinogen receptors on platelets of Philadelphia-negative chronic myeloproliferative neoplasm (MPN) patients. We collected blood samples from 40 consecutive MPN patients and healthy volunteers. We performed flow cytometry analysis of P-selectin expression and integrin beta-3, activation of glycoprotein (GP) IIb/IIIa and fibrinogen receptor exposure (PAC-1 binding). Surprisingly, we found a very low PAC-1 binding capacity in MPN patients; however, the expression of PAC-1 was almost completely recovered with aspirin intake. We hypothesize that the hypercoagulable states observed in MPN patients could depend on a primarily plasma-driven impairment of fibrin turnover and thrombin generation.


Asunto(s)
Aspirina/uso terapéutico , Fibrinógeno/uso terapéutico , Trastornos Mieloproliferativos/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Aspirina/farmacología , Plaquetas , Enfermedad Crónica , Fibrinógeno/farmacología , Humanos , Persona de Mediana Edad
9.
Cancers (Basel) ; 11(11)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31717700

RESUMEN

INTRODUCTION: Screening for synthetic lethality markers has demonstrated that the inhibition of the cell cycle checkpoint kinases WEE1 together with CHK1 drastically affects stability of the cell cycle and induces cell death in rapidly proliferating cells. Exploiting this finding for a possible therapeutic approach has showed efficacy in various solid and hematologic tumors, though not specifically tested in acute lymphoblastic leukemia. METHODS: The efficacy of the combination between WEE1 and CHK1 inhibitors in B and T cell precursor acute lymphoblastic leukemia (B/T-ALL) was evaluated in vitro and ex vivo studies. The efficacy of the therapeutic strategy was tested in terms of cytotoxicity, induction of apoptosis, and changes in cell cycle profile and protein expression using B/T-ALL cell lines. In addition, the efficacy of the drug combination was studied in primary B-ALL blasts using clonogenic assays. RESULTS: This study reports, for the first time, the efficacy of the concomitant inhibition of CHK1/CHK2 and WEE1 in ALL cell lines and primary leukemic B-ALL cells using two selective inhibitors: PF-0047736 (CHK1/CHK2 inhibitor) and AZD-1775 (WEE1 inhibitor). We showed strong synergism in the reduction of cell viability, proliferation and induction of apoptosis. The efficacy of the combination was related to the induction of early S-phase arrest and to the induction of DNA damage, ultimately triggering cell death. We reported evidence that the efficacy of the combination treatment is independent from the activation of the p53-p21 pathway. Moreover, gene expression analysis on B-ALL primary samples showed that Chek1 and Wee1 are significantly co-expressed in samples at diagnosis (Pearson r = 0.5770, p = 0.0001) and relapse (Pearson r= 0.8919; p = 0.0001). Finally, the efficacy of the combination was confirmed by the reduction in clonogenic survival of primary leukemic B-ALL cells. CONCLUSION: Our findings suggest that the combination of CHK1 and WEE1 inhibitors may be a promising therapeutic strategy to be tested in clinical trials for adult ALL.

10.
Chem Commun (Camb) ; 54(72): 10056-10059, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30132469

RESUMEN

The Gd(iii)-complexes of three novel HP-DO3A-like ligands have been investigated to assess the relationship between relaxometry and intramolecular catalysis of the proton exchange. The structures of these ligands differ from the parent HP-DO3A because the methyl group of the hydroxy-propyl arm has been replaced by -Ph-OH, -Ph-NH2 and -Ph-COOH, respectively. The phenol, amine and carboxylate functionalities display an intramolecular H-bonding with the coordinated hydroxyl moiety that affects either the pK values of the involved functionalities and the rate of the proton exchange process.

11.
J Transl Med ; 16(1): 172, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29925389

RESUMEN

BACKGROUND: In chronic lymphocytic leukemia (CLL) disease onset and progression are influenced by the behavior of specific CD4+ T cell subsets, such as T regulatory cells (Tregs). Here, we focused on the phenotypic and functional characterization of Tregs in CLL patients to improve our understanding of the putative mechanism by which these cells combine immunosuppressive and effector-like properties. METHODS: Peripheral blood mononuclear cells were isolated from newly diagnosed CLL patients (n = 25) and healthy volunteers (n = 25). The phenotypic and functional characterization of Tregs and their subsets was assessed by flow cytometry. In vitro analysis of TH1, TH2, TH17 and Tregs cytokines was evaluated by IFN-γ, IL-4, IL-17A and IL-10 secretion assays. The transcriptional profiling of 84 genes panel was evaluated by RT2 Profiler PCR Array. Statistical analysis was carried out using exact non parametric Mann-Whitney U test. RESULTS: In all CLL samples, we found a significant increase in the frequency of IL-10-secreting Tregs and Tregs subsets, a significant rise of TH2 IL-4+ and TH17 IL-17A+ cells, and a higher percentage of IFN-γ/IL-10 and IL-4/IL-10 double-releasing CD4+ T cells. In addition, we also observed the up-regulation of innate immunity genes and the down-regulation of adaptive immunity ones. CONCLUSIONS: Our data show that Tregs switch towards an effector-like phenotype in CLL patients. This multifaceted behavior is accompanied by an altered cytokine profiling and transcriptional program of immune genes, leading to a dysfunction in immune response in the peripheral blood environment of CLL patients.


Asunto(s)
Inmunosupresores/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Linfocitos T Reguladores/inmunología , Inmunidad Adaptativa , Anciano , Anciano de 80 o más Años , Candida albicans/fisiología , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Humanos , Inmunidad Innata , Interferón gamma/metabolismo , Interleucina-23/sangre , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Subgrupos Linfocitarios/inmunología , Masculino , Persona de Mediana Edad , Fenotipo
12.
Inorg Chem ; 57(9): 5567-5574, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29687717

RESUMEN

The relaxivity of Gd(HP-DO3A) was studied as a function of pH and buffer composition in order to identify the main factors of the observed relaxation enhancement due to the exchange of the coordinated hydroxyl proton. It was established that the paramagnetic relaxation time, T1M, of the coordinated hydroxyl proton is about 50% shorter than that of the protons in the coordinated water molecule. The control of the p K of the coordinated alcoholic -OH moiety in the ligand is fundamental to utilize the proton exchange enhanced relaxivity under physio/pathologic conditions. A new derivative of Gd(HP-DO3A) was synthesized by replacing the -CH3 group with a -CF3 moiety. In this complex, the -OH group becomes more acidic. Consequently, the maximum contribution of the proton exchange to the relaxivity is shifted to a lower pH region with the fluorinated ligand.


Asunto(s)
Medios de Contraste/química , Gadolinio/química , Compuestos Heterocíclicos con 1 Anillo/química , Imagen por Resonancia Magnética , Compuestos Organometálicos/química , Protones , Medios de Contraste/síntesis química , Concentración de Iones de Hidrógeno , Estructura Molecular , Compuestos Organometálicos/síntesis química
13.
Mini Rev Med Chem ; 18(3): 287-294, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28969553

RESUMEN

BACKGROUND: Chronic lymphocytic leukemia (CLL) is an indolent B-lineage neoplasm, characterized by clonal expansion of CD5 positive B cells with constitutive activation of survival pathways including NF-kB. Pentoxifylline, a xanthine-derivative compound indicated for the treatment of microvascular disturbancies, has been suggested to have anti-proliferative and anti-metastatic activities in various types of cancer. In the present study we extend these data showing one of the potential molecular mechanisms through which Pentoxifylline may promote apoptosis in CLL clonal lymphocytes. METHODS: Peripheral blood mononuclear cells were isolated from 15 CLL patients 0 RAI stage and 15 healthy volunteers and treated for 24 and 48 hours with Pentoxifylline. Apoptosis induction was evaluated through Annexin V and TUNEL assays. Mitochondrial membrane potential depolarization analysis, active Caspase-3 assay, reactive oxygen species generation and Western Blot were assessed to further investigate the alterations induced by Pentoxifylline. RESULTS: We observed a statistically significant occurrence of apoptosis, DNA fragmentation and active Caspase-3 in lymphocytes from CLL patients compared to healthy volunteers after 48 hours of Pentoxifylline treatment. To clarify the molecular mechanism of the drug, we also evaluated the expression levels of NF-kB/p65 and its related proteins. In treated CLL cells, NF-kB/p65 was significantly decreased in comparison to normal cells, whereas we observed a less marked reduction of Bcl-2 expression. The treatment also induced a decrease of Mcl-1 in CLL cells with a greater down-regulation of the anti-apoptotic alternatively spliced isoform. CONCLUSION: These findings showed that Pentoxifylline induced apoptosis in leukemic cells through a molecular mechanism that involves the NF-kB signaling.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , FN-kappa B/antagonistas & inhibidores , Pentoxifilina/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Antineoplásicos/química , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Leucocitos Mononucleares/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Pentoxifilina/química , Relación Estructura-Actividad
14.
Dig Dis Sci ; 62(8): 1872-1880, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28527050

RESUMEN

Sirtuins (SIRT), first described as nicotinamide adenine dinucleotide (NAD+)-dependent type III histone deacetylases, are produced by cells to support in the defense against chronic stress conditions such as metabolic syndromes, neurodegeneration, and cancer. SIRT-3 is one of the most studied members of the mitochondrial sirtuins family. In particular, its involvement in metabolic diseases and its dual role in cancer have been described. In the present review, based on the evidence of SIRT-3 involvement in metabolic dysfunctions, we aimed to provide an insight into the multifaceted role of SIRT-3 in many solid and hematological tumors with a particular focus on hepatocellular carcinoma (HCC). SIRT-3 regulatory effect and involvement in metabolism dysfunctions may have strong implications in HCC development and treatment. Research literature widely reports the relationship between metabolic disorders and HCC development. This evidence suggests a putative bridge role of SIRT-3 between metabolic diseases and HCC. However, further studies are necessary to demonstrate such interconnection.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sirtuina 3/fisiología , Proteínas Supresoras de Tumor/fisiología , Carcinoma Hepatocelular/etiología , Humanos , Neoplasias Hepáticas/etiología , Enfermedades Metabólicas/complicaciones , Neoplasias/etiología , Neoplasias/metabolismo
15.
Histopathology ; 71(1): 72-80, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28208230

RESUMEN

AIMS: Glycogen synthase kinase-3 beta (GSK-3ß) is a serine/threonine kinase involved in glycogen metabolism, cell cycle progression, differentiation, embryogenesis, migration, metabolism, survival and cellular senescence. Its main biological function is to inhibit ß-catenin by sequestration and promotion of its proteasomal degradation in the Wnt canonical pathway; however, GSK-3ß interacts with multiple signalling pathways, and aberrant expression of the enzyme was reported in many solid neoplasms. This study aimed to investigate the biological relevance of GSK-3ß in classical Hodgkin lymphomas (cHL). METHODS AND RESULTS: We analysed the functional status of GSK-3ß enzyme in cHL by using antibodies raised against fixation-resistant epitopes of phospho Y216 GSK-3ß (active form), phospho S9 GSK-3ß (inactive form) and ß-catenin protein. We first detected the pY216 GSK-3ß active form of the enzyme in 100 of 100 (100%) of the cases, and in line with the latter expression profile, the ß-catenin protein was found in only 12 of 100 (12%) of the samples. As reported previously in bladder cancer, pancreatic adenocarcinoma and chronic lymphocytic leukaemia, we showed an aberrant nuclear localization in the neoplastic clone of active pY216 GSK-3ß in 78 of 100 (78%) of cHL cases. CONCLUSIONS: We demonstrated the activation of GSK-3ß in cHL resulting in inhibition of the Wnt/ß-catenin signal cascade and the aberrant accumulation of its activated form in nuclei of Hodgkin Reed-Sternberg and Hodgkin cells. These findings may be relevant for future clinical studies, identifying GSK-3ß as a potential therapeutic target for cHL.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/metabolismo , Enfermedad de Hodgkin/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Transcriptoma
16.
Magn Reson Med ; 78(4): 1523-1532, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27791281

RESUMEN

PURPOSE: To dissect the contributions to the longitudinal relaxivity (r1 ) of two commercial contrast agents (CAs), Gd-DOTA and Gd-HP-DO3A, and to synthesize/characterize a novel macrocyclic agent (Gd-Phen-DO3A) having superior r1 . METHODS: Longitudinal relaxation rates R1 of the CAs in saline with/without human serum albumin (HSA), ionized simulated body fluid (i-SBF), viscous simulated body fluid (v-SBF), and human plasma were measured. Results have been interpreted to evince the main determinants to the observed r1 values. RESULTS: In v-SBF or in the presence of HSA, r1 is enhanced for all complexes, reflecting the viscosity increase and a weak interaction with proteins. The CAs further differentiate in plasma, with a relaxivity increase (versus saline) of approximately 1, 1.5, and 2.5 mM-1 s-1 for Gd-DOTA, Gd-HPDO3A, and Gd-Phen-DO3A, respectively. R1 versus pH curves in i-SBF indicates that prototropic exchange sizably contributes to the relaxivity of Gd-HP-DO3A and Gd-Phen-DO3A. CONCLUSION: The major contributions to r1 in the physiological environment have been highlighted, namely, increased viscosity, complex-protein interaction, and prototropic exchange. The control of these terms allows the design of novel macrocyclic structures with enhanced r1 as a result of an improved interaction with plasma's macromolecules and the shift of the prototropic exchange to physiological pH. Magn Reson Med 78:1523-1532, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Medios de Contraste/química , Compuestos Heterocíclicos/química , Imagen por Resonancia Magnética/métodos , Compuestos Organometálicos/química , Medios de Contraste/análisis , Medios de Contraste/metabolismo , Compuestos Heterocíclicos/sangre , Compuestos Heterocíclicos/metabolismo , Humanos , Modelos Biológicos , Compuestos Organometálicos/sangre , Compuestos Organometálicos/metabolismo , Unión Proteica , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Viscosidad
17.
J Transl Med ; 13: 229, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26174551

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is an incurable disease with fatal infections or relapse being the main causes of death in most cases. In particular, the severe infections occurring in these patients before or during any treatment suggest an intrinsic alteration of the immune system. In this respect, IL-17-producing T helper (Th17) besides playing a key role in regulating inflammatory response, tumor growth and autoimmune diseases, have been shown to protect against bacterial and fungal pathogens. However, the role of Th17 cells in AML has not yet been clarified. METHODS: T cell frequencies were assessed by flow cytometry in the peripheral blood of 30 newly diagnosed AML patients and 30 age-matched healthy volunteers. Cytokine production was determined before and after culture of T cells with either Candida Albicans or AML blasts. Statistical analyses were carried out using the paired and unpaired two-tailed Student's t tests and confirmed with the non parametric Wilcoxon signed-rank test. RESULTS: A strong increase of Th17 cells producing immunosuppressive IL-10 was observed in AML patients compared with healthy donors. In addition, stimulation of AML-derived T cells with a Candida albicans antigen induced significantly lower IFN-γ production than that observed in healthy donors; intriguingly, depletion of patient Th17 cells restored IFN-γ production after stimulation. To address the role of AML blasts in inducing Th17 alterations, CD4+ cells from healthy donors were co-cultured with CD33+ blasts: data obtained showed that AML blasts induce in healthy donors levels of IL-10-producing Th17 cells similar to those observed in patients. CONCLUSIONS: In AML patients altered Th17 cells actively cause an immunosuppressive state that may promote infections and probably tumor escape. Th17 cells could thus represent a new target to improve AML immunotherapy.


Asunto(s)
Candidiasis/inmunología , Terapia de Inmunosupresión , Interleucina-10/biosíntesis , Interleucina-17/biosíntesis , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/microbiología , Linfocitos T/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Crisis Blástica/inmunología , Candida albicans/inmunología , Candidiasis/complicaciones , Candidiasis/microbiología , Técnicas de Cocultivo , Citocinas/metabolismo , Femenino , Humanos , Interferón gamma/biosíntesis , Leucemia Mieloide Aguda/sangre , Leucemia Mieloide Aguda/complicaciones , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Células Th17/inmunología
18.
Inorg Chem ; 53(6): 2858-72, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24564285

RESUMEN

The Gd(3+)-DO3A-arylsulphonamide (DO3A-SA) complex is a promising pH-sensitive MRI agent. The stability constants of the DO3A-SA and DO3A complexes formed with Mg(2+), Ca(2+), Mn(2+), Zn(2+), and Cu(2+) ions are similar, whereas the logKLnL values of Ln(DO3A-SA) complexes are 2 orders of magnitude higher than those of the Ln(DO3A) complexes. The protonation constant (log KMHL) of the sulphonamide nitrogen in the Mg(2+), Ca(2+), Mn(2+), Zn(2+), and Cu(2+) complexes is very similar to that of the free ligand, whereas the logKLnHL values of the Ln(DO3A-SA) complexes are lower by about 4 logK units, indicating a strong interaction between the Ln(3+) ions and the sulphonamide N atom. The Ln(HDO3A-SA) complexes are formed via triprotonated *Ln(H3DO3A-SA) intermediates which rearrange to the final complex in an OH(-)-assisted deprotonation process. The transmetalation reaction of Gd(HDO3A-SA) with Cu(2+) is very slow (t1/2 = 5.6 × 10(3) h at pH = 7.4), and it mainly occurs through proton-assisted dissociation of the complex. The (1)H and (13)C NMR spectra of the La-, Eu-, Y-, and Lu(DO3A-SA) complexes have been assigned using 2D correlation spectroscopy (COSY, EXSY, HSQC). Two sets of signals are observed for Eu-, Y-, and Lu(DO3A-SA), showing two coordination isomers in solution, that is, square antiprismatic (SAP) and twisted square antiprismatic (TSAP) geometries with ratios of 86-14, 93-7, and 94-6%, respectively. Line shape analysis of the (13)C NMR spectra of La-, Y- , and Lu(DO3A-SA) gives higher rates and lower activation entropy values compared to Ln(DOTA) for the arm rotation, which indicates that the Ln(DO3A-SA) complexes are less rigid due to the larger flexibility of the ethylene group in the sulphonamide pendant arm. The fast isomerization and the lower activation parameters of Ln(DO3A-SA) have been confirmed by theoretical calculations in vacuo and by using the polarizable continuum model. The solid state X-ray structure of Cu(H2DO3A-SA) shows distorted octahedral coordination. The coordination sites of Cu(2+) are occupied by two ring N- and two carboxylate O-atoms in equatorial position. The other two ring N-atoms complete the coordination sphere in axial positions. The solid state structure also indicates that a carboxylate O atom and the sulphonamide nitrogen are protonated and noncoordinated.


Asunto(s)
Sulfonamidas/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Cinética , Modelos Moleculares , Estructura Molecular , Espectroscopía de Protones por Resonancia Magnética
19.
J Med Chem ; 56(6): 2466-77, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23469759

RESUMEN

Novel contrast agent based systems, which selectively visualize specific cells, e.g., neurons in the brain, would be of substantial importance for the fast developing field of molecular magnetic resonance imaging (MRI). We report here the synthesis and in vitro validation of a Gd(III)-based contrast agent designed to act as an MRI responsive probe for imaging the activity of the enzyme glutamic acid decarboxylase (GAD) present in neurons. Upon the action of the enzyme, the Gd(III) complex increases its hydration sphere and takes on a residual positive charge that promotes its binding to endogenous macromolecules. Both effects contribute in a synergic way to generate a marked relaxation enhancement, which directly reports enzyme activity and will allow activity detection of GAD positive cells in vitro and in vivo selectively.


Asunto(s)
Gadolinio/química , Glutamato Descarboxilasa/metabolismo , Imagen por Resonancia Magnética , Técnicas de Química Sintética , Medios de Contraste/química , Medios de Contraste/metabolismo , Gadolinio/metabolismo , Espectroscopía de Resonancia Magnética , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Neuronas/enzimología , Electricidad Estática
20.
Neuroimage ; 62(3): 1685-93, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22609794

RESUMEN

The unambiguous detection of specific neuronal subtypes is up to now only possible with invasive techniques or optical imaging after genetic modification. High field magnetic resonance imaging (MRI) has the ability to visualize the brain structure and anatomy noninvasively, with high resolution--but missing the cell specific and functional information. Here we present a new tool for neuroimaging with MRI, enabling the selective detection of GABAergic neurons under in vivo conditions. The specific imaging contrast is achieved by a novel paramagnetic contrast agent, which responds to the activity of the enzyme glutamic acid decarboxylase--expressed solely by inhibitory neurons. The relaxivity of the complex is increased upon decarboxylation of two glutamic acid moieties, thus allowing increased water access to the inner and outer coordination spheres of the paramagnetic ion. The mechanism and specificity of activation were proven with tissue lysates and further applied to a differentiation protocol for murine embryonic stem cells. The relaxation enhancement was studied quantitatively and revealed decreased longitudinal relaxation times in the inhibitory neuron samples compared to the naïve stem cells in vitro and in vivo. Furthermore, this approach offers not only the discrimination of inhibitory, GABAergic neurons in the brain but also may expand the usefulness of MRI for functional imaging on a cellular level.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/citología , Medios de Contraste , Neuronas GABAérgicas/citología , Imagen por Resonancia Magnética/métodos , Animales , Encéfalo/metabolismo , Medios de Contraste/química , Neuronas GABAérgicas/metabolismo , Gadolinio , Immunoblotting , Inmunohistoquímica , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...