Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epigenomics ; 16(6): 359-374, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38440863

RESUMEN

Aim: To study the expression of histone methyltransferase SMYD1 in white adipose tissue (WAT) and brown adipose tissue and during differentiation of preadipocytes to white and beige phenotypes. Methods: C57BL/6J mice fed a high-fat diet (and exposed to cold) and 3T3-L1 cells stimulated to differentiate into white and beige adipocytes were used. Results: SMYD1 expression increased in WAT of high-fat diet fed mice and in WAT and brown adipose tissue of cold-exposed mice, suggesting its role in thermogenesis. SMYD1 expression was higher in beige adipocytes than in white adipocytes, and its silencing leads to a decrease in mitochondrial content and in Pgc-1α expression. Conclusion: These data suggest a novel role for SMYD1 as a positive regulator of energy control in adipose tissue.


In this study, a protein called SMYD1 was examined in the adipose tissue of mice to understand its role in the development of different types of fat cells. The authors used mice fed a high-fat diet or mice exposed to a cold environment. The experiments were also performed on cultured cells that were stimulated to form specific types of fat cells (white adipocytes, which store energy; or beige adipocytes, which are responsible for releasing energy in the form of heat). The study found that SMYD1 increased in white adipose tissue particularly in response to cold exposure and high-fat diet, suggesting involvement in body temperature regulation. SMYD1 was higher in beige adipocytes than in white fat cells, and when SMYD1 was reduced, there was a decrease in certain factors related to energy control. Overall, these results suggest that SMYD1 plays a novel role in energy regulation in adipose tissues.


Asunto(s)
Tejido Adiposo , Termogénesis , Animales , Ratones , Células 3T3-L1 , Histona Metiltransferasas , Ratones Endogámicos C57BL , Termogénesis/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255977

RESUMEN

Peripheral nerve injuries lead to severe functional impairments and long recovery times, with limited effectiveness and accessibility of current treatments. This has increased interest in natural bioactive compounds, such as ursolic acid (UA). Our study evaluated the effect of an oleolyte rich in UA from white grape pomace (WGPO) on neuronal regeneration in mice with induced sciatic nerve resection, administered concurrently with the induced damage (the WGPO group) and 10 days prior (the PRE-WGPO group). The experiment was monitored at two-time points (4 and 10 days) after injury. After 10 days, the WGPO group demonstrated a reduction in muscle atrophy, evidenced by an increased number and diameter of muscle fibers and a decreased Atrogin-1 and Murf-1 expression relative to the denervated control. It was also observed that 85.7% of neuromuscular junctions (NMJs) were fully innervated, as indicated by the colocalization of α-bungarotoxin and synaptophysin, along with the significant modulation of Oct-6 and S-100. The PRE-WGPO group showed a more beneficial effect on nerve fiber reformation, with a significant increase in myelin protein zero and 95.2% fully innervated NMJs, and a pro-hypertrophic effect in resting non-denervated muscles. Our findings suggest WGPO as a potential treatment for various conditions that require the repair of nerve and muscle injuries.


Asunto(s)
Traumatismos de los Nervios Periféricos , Animales , Ratones , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Ácido Ursólico , Nervio Ciático , Suplementos Dietéticos , Fibras Musculares Esqueléticas
3.
J Basic Clin Physiol Pharmacol ; 34(5): 555-557, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37589654

Asunto(s)
Glutamina
4.
Biomed Pharmacother ; 166: 115326, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37611438

RESUMEN

Sirtuin 6 (SIRT6) has a critical role in cutaneous Squamous Cell Carcinoma (cSCC): SIRT6 silencing in skin SCC cells has pro-differentiating effects and SIRT6 deletion abrogated DMBA-TPA-induced skin tumorigenesis in mice. On the other hand, SIRT6 acts as tumor suppressor in SCC by enhancing glycolysis in tumor propagating cells. Herein, pharmacological modulation of SIRT6 deacetylase activity was investigated in cSCC, with S6 (inhibitor) or MDL-800 (activator). In cSCC cells, S6 recreated the pro-differentiating effects of SIRT6 silencing, as the levels of Keratin 1, Keratin 10 and Loricrin were upregulated compared to controls. Next, the effects of SIRT6 pharmacological modulation were evaluated in a DMBA-TPA-induced skin cancer mouse model. Mice treated with the inhibitor S6 in a preventive approach, i.e. at the beginning of the promotion stage, presented reduced number and size of papillomas, compared to the controls. The epidermal hyperproliferation marker Keratin 6 and the cSCC marker Keratin 8 were less abundant when SIRT6 was inhibited. In S6-treated lesions, the Epithelial-Mesenchymal Transition (EMT) markers Zeb1 and Vimentin were less expressed compared to untreated lesions. In a therapeutic approach, i.e. treatment starting after papilloma appearance, the S6 group presented reduced papillomas (number and size), whereas MDL-800-treated mice displayed an opposite trend. In S6-treated lesions, Keratin 6 and Keratin 8 were less expressed, EMT was less advanced, with a higher E-cadherin/Vimentin ratio, indicating a delayed carcinogenesis when SIRT6 was inhibited. Our results confirm that SIRT6 plays a role in skin carcinogenesis and suggest SIRT6 pharmacological inhibition as a promising strategy in cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Papiloma , Sirtuinas , Neoplasias Cutáneas , Animales , Ratones , Neoplasias Cutáneas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Queratina-8 , Vimentina , Queratina-6 , Carcinogénesis
5.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569453

RESUMEN

Skeletal muscle (SkM) lipid composition plays an essential role in physiological muscle maintenance and exercise performance. Thyroid hormones (THs) regulate muscle formation and fuel energy utilization by modulating carbohydrates and lipid and protein metabolism. The best-known effects of THs in SkM include the promotion of mitochondrial biogenesis, the fiber-type switch from oxidative to glycolytic fibers, and enhanced angiogenesis. To assess the role of THs on the lipidic composition of SkM fibers, we performed lipidomic analyses of SkM cells and tissues, glucose tolerance experiments, and exercise performance tests. Our data demonstrated that TH treatment induces remodeling of the lipid profile and changes the proportion of fatty acids in SkM. In brief, THs significantly reduced the ratio of stearic/oleic acid in the muscle similar to what is induced by physical activity. The increased proportion of unsaturated fatty acids was linked to an improvement in insulin sensitivity and endurance exercise. These findings point to THs as critical endocrine factors affecting exercise performance and indicate that homeostatic maintenance of TH signals, by improving cell permeability and receptor stability at the cell membrane, is crucial for muscle physiology.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hormonas Tiroideas/metabolismo , Ejercicio Físico , Ácidos Grasos/metabolismo
6.
Nat Commun ; 14(1): 1244, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871014

RESUMEN

The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.


Asunto(s)
Yoduro Peroxidasa , Proteína p53 Supresora de Tumor , Daño del ADN , Ejercicio Físico , Terapia Genética
7.
Pharmacol Res ; 189: 106685, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773711

RESUMEN

The iodothyronine deiodinases constitute a family of three selenoenzymes regulating the intracellular metabolism of Thyroid Hormones (THs, T4 and T3) and impacting on several physiological processes, including energy metabolism, development and cell differentiation. The type 1, 2 and 3 deiodinases (D1, D2, and D3), are sensitive, rate-limiting components within the TH axis, and rapidly control TH action in physiological conditions or disease. Notably, several human pathologies are characterized by deiodinases deregulation (e.g., inflammation, osteoporosis, metabolic syndrome, muscle wasting and cancer). Consequently, these enzymes are golden targets for the identification and development of pharmacological compounds endowed with modulatory activities. However, until now, the portfolio of inhibitors for deiodinases is limited and the few active compounds lack selectivity. Here, we describe the cephalosporin Cefuroxime as a novel D2 specific inhibitor. In both in vivo and in vitro settings, Cefuroxime acts as a selective inhibitor of D2 activity, without altering the enzymatic activity of D1 and D3. By inhibiting TH activation in target tissues, Cefuroxime alters the sensitivity of the hypothalamus-pituitary axis and interferes with the central regulation of THs levels, and is thus eligible as a potential new regulator of hyperthyroid pathologies, which affect thousands of patients worldwide.


Asunto(s)
Cefuroxima , Yoduro Peroxidasa , Humanos , Yoduro Peroxidasa/metabolismo , Reposicionamiento de Medicamentos , Hormonas Tiroideas/metabolismo , Diferenciación Celular
8.
Artículo en Inglés | MEDLINE | ID: mdl-36293798

RESUMEN

BACKGROUND: Obstructive sleep apnea syndrome (OSAS) may be associated with and activates the stress response system, and variation in the physiological antioxidant capacity of body fluids. Our aim was to evaluate the variation of pH and antioxidant capacity on the saliva of obstructive sleep apnea subjects (OG) compared to a control group (CG). METHOD: Fifty subjects with moderate/severe OSAS were recruited in Tor Vergata Hospital and compared with 20 healthy subjects CG. The buffer and the antioxidant capacity of the samples were quantified measuring the pH and the percentage of total salivary antioxidant capacity (%TAC), which refers to the reduced glutathione salivary concentration (GSH). Moreover, the protein concentration and the gelatinolytic activity of metalloproteinases were quantified. RESULTS: The data showed that the pH value is slightly more alkaline in OSAS subjects; however, it is not directly related to the severity of OSAS. The %TAC was found to be significantly reduced by 86.2% in the OG. Proteins of saliva from the OG were found 1.5 times more concentrated than in the healthy sample. The gelatinolytic activity of metalloproteinases of healthy and OSA did not show statistically significant changes. CONCLUSIONS: The salivary samples from OSAS compared to CG show an alteration of the oxidative state, the pH buffering power, and protein concentrations, inducing conditions that can easily evolve chronic gingivitis. Further investigations are necessary to evaluate the feasibility of using salivary fluid for the early diagnosis of oral or systemic problems in OSAS subjects.


Asunto(s)
Antioxidantes , Apnea Obstructiva del Sueño , Adulto , Humanos , Saliva , Apnea Obstructiva del Sueño/diagnóstico , Glutatión , Concentración de Iones de Hidrógeno
9.
Metabolites ; 12(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35629909

RESUMEN

Skeletal muscle is a key energy-regulating organ, skilled in rapidly boosting the rate of energy production and substrate consumption following increased workload demand. The alteration of skeletal muscle metabolism is directly associated with numerous pathologies and disorders. Thyroid hormones (THs) and their receptors (TRs, namely, TRα and TRß) exert pleiotropic functions in almost all cells and tissues. Skeletal muscle is a major THs-target tissue and alterations of THs levels have multiple influences on the latter. However, the biological role of THs and TRs in orchestrating metabolic pathways in skeletal muscle has only recently started to be addressed. The purpose of this paper is to investigate the muscle metabolic response to TRs abrogation, by using two different mouse models of global TRα- and TRßKO. In line with the clinical features of resistance to THs syndromes in humans, characterized by THRs gene mutations, both animal models of TRs deficiency exhibit developmental delay and mitochondrial dysfunctions. Moreover, using transcriptomic and metabolomic approaches, we found that the TRs-THs complex regulates the Fatty Acids (FAs)-binding protein GOT2, affecting FAs oxidation and transport in skeletal muscle. In conclusion, these results underline a new metabolic role of THs in governing muscle lipids distribution and metabolism.

11.
Cell Rep ; 38(8): 110409, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196498

RESUMEN

Thyroid hormones (THs) are key metabolic regulators coordinating short- and long-term energy needs. In skeletal muscle, THs modulate energy metabolism in pathophysiological conditions. Indeed, hypo- and hyperthyroidism are leading causes of muscle weakness and strength; however, the metabolic pathways underlying these effects are still poorly understood. Using molecular, biochemical, and isotope-tracing approaches combined with mass spectrometry and denervation experiments, we find that THs regulate glutamine metabolism and anaplerotic fluxes by up-regulating the glutamate pyruvate transaminase 2 (GPT2) gene. In humans, GPT2 autosomal recessive mutations cause a neurological syndrome characterized by intellectual disability, microcephaly, and progressive motor symptoms. Here, we demonstrate a role of the TH/GPT2 axis in skeletal muscle in which it regulates muscle weight and fiber diameter in resting and atrophic conditions and results in protection from muscle loss during atrophy. These results describe an anabolic route by which THs rewire glutamine metabolism toward the maintenance of muscle mass.


Asunto(s)
Glutamina , Discapacidad Intelectual , Alanina Transaminasa , Glutamina/metabolismo , Humanos , Discapacidad Intelectual/genética , Hormonas Tiroideas , Transaminasas
12.
Cancer Lett ; 532: 215581, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134514

RESUMEN

Prostate Cancer (PCa) is the most commonly diagnosed non-cutaneous cancer in males and the fifth leading cause of death worldwide. The majority of PCas are androgen-sensitive, with a significant up-regulation of Androgen Receptor (AR) that causes a stimulatory effect on growth and progression of cancer cells. For this reason, the first-line therapy for PCa is androgen ablation, even if it ultimately fails due to the onset of hormone-refractory state, in which the malignant cells do not sense the androgen signal anymore. Besides androgens, a growing number of evidence suggests that Thyroid Hormones (THs) mediate tumor-promoting effects in a variety of human cancers, as Epithelial-to-Mesenchymal Transition (EMT), invasion and metastasis and also stimulation of angiogenesis and tumor metabolism. Moreover, epidemiological studies demonstrated an increased risk for PCa in patients with lower levels of Thyreotropin (TSH). Here, we investigated if intracellular TH metabolism affects Benign Prostatic Hyperplasia (BPH) and PCa formation and progression. We found that the intracellular TH metabolism is a crucial determinant of PCa behavior. We observed that a dynamic stage-specific expression of the THs modulating enzymes, the deiodinases, is required for the progression of BPH to PCa malignancy. By acting simultaneously on epithelial cancer cells and fibroblasts, THs exert a proliferative and pro-inflammatory effect cooperating with androgens. These findings suggest that androgens and THs may interplay and mediate a coordinate effect on human PCa formation and progression. In light of our results, future perspective could be to explore the potential benefits of THs intracellular modulators aimed to counteract PCa progression.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Andrógenos/metabolismo , Carcinogénesis , Línea Celular Tumoral , Humanos , Inflamación , Masculino , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/patología , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Hormonas Tiroideas , Microambiente Tumoral
13.
Cancers (Basel) ; 13(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205977

RESUMEN

Cancer angiogenesis is required to support energetic demand and metabolic stress, particularly during conditions of hypoxia. Coupled to neo-vasculogenesis, cancer cells rewire metabolic programs to sustain growth, survival and long-term maintenance. Thyroid hormone (TH) signaling regulates growth and differentiation in a variety of cell types and tissues, thus modulating hyper proliferative processes such as cancer. Herein, we report that TH coordinates a global program of metabolic reprogramming and induces angiogenesis through up-regulation of the VEGF-A gene, which results in the enhanced proliferation of tumor endothelial cells. In vivo conditional depletion of the TH activating enzyme in a mouse model of cutaneous squamous cell carcinoma (SCC) reduces the concentration of TH in the tumoral cells and results in impaired VEGF-A production and attenuated angiogenesis. In addition, we found that TH induces the expression of the glycolytic genes and fosters lactate production, which are key traits of the Warburg effect. Taken together, our results reveal a TH-VEGF-A-HIF1α regulatory axis leading to enhanced angiogenesis and glycolytic flux, which may represent a target for SCC therapy.

14.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34281225

RESUMEN

Thyroid hormones (THs) are key regulators of different biological processes. Their action involves genomic and non-genomic mechanisms, which together mediate the final effects of TH in target tissues. However, the proportion of the two processes and their contribution to the TH-mediated effects are still poorly understood. Skeletal muscle is a classical target tissue for TH, which regulates muscle strength and contraction, as well as energetic metabolism of myofibers. Here we address the different contribution of genomic and non-genomic action of TH in skeletal muscle cells by specifically silencing the deiodinase Dio2 or the ß3-Integrin expression via CRISPR/Cas9 technology. We found that myoblast proliferation is inversely regulated by integrin signal and the D2-dependent TH activation. Similarly, inhibition of the nuclear receptor action reduced myoblast proliferation, confirming that genomic action of TH attenuates proliferative rates. Contrarily, genomic and non-genomic signals promote muscle differentiation and the regulation of the redox state. Taken together, our data reveal that integration of genomic and non-genomic signal pathways finely regulates skeletal muscle physiology. These findings not only contribute to the understanding of the mechanisms involved in TH modulation of muscle physiology but also add insight into the interplay between different mechanisms of action of TH in muscle cells.


Asunto(s)
Células Musculares/fisiología , Músculo Esquelético/fisiología , Hormonas Tiroideas/fisiología , Animales , Diferenciación Celular , Integrina beta3/fisiología , Yoduro Peroxidasa/fisiología , Ratones , Músculo Esquelético/citología , Yodotironina Deyodinasa Tipo II
15.
J Pers Med ; 11(3)2021 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33799349

RESUMEN

Melanoma is the most lethal form of skin cancer and its incidence is growing worldwide. In the last ten years, the therapeutic scenario of this disease has been revolutionized by the introduction of targeted therapies and immune-checkpoint inhibitors. However, in patients with many lesions and bulky tumors, in which surgery is no longer feasible, there is a need for new treatment options. Here we report, for the first time to our knowledge, a clinical case where a melanoma patient harboring the SMO p.Gln216Arg mutation has been treated with imiquimod, showing a complete and durable response. To better explain this outstanding response to the treatment, we transfected a melanoma cell line (MeWo) with the SMO p.Gln216Arg mutation in order to evaluate its role in response to the imiquimod treatment. Moreover, to better demonstrate that the antitumor activity of imiquimod was due to its role in suppressing the oncogenic SMO signaling pathway, independently of its immune modulating function, an in vivo experiment has been performed. This clinical case opens up a new scenario for the treatment of melanoma patients identifying a new potentially druggable target.

16.
Endocrinology ; 162(4)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33539515

RESUMEN

Hormones are key drivers of cancer development, and alteration of the intratumoral concentration of thyroid hormone (TH) is a common feature of many human neoplasias. Besides the systemic control of TH levels, the expression and activity of deiodinases constitute a major mechanism for the cell-autonomous, prereceptoral control of TH action. The action of deiodinases ensures tight control of TH availability at intracellular level in a time- and tissue-specific manner, and alterations in deiodinase expression are frequent in tumors. Research over the past decades has shown that in cancer cells, a complex and dynamic expression of deiodinases is orchestrated by a network of growth factors, oncogenic proteins, and miRNA. It has become increasingly evident that this fine regulation exposes cancer cells to a dynamic concentration of TH that is functional to stimulate or inhibit various cellular functions. This review summarizes recent advances in the identification of the complex interplay between deiodinases and cancer and how this family of enzymes is relevant in cancer progression. We also discuss whether deiodinase expression could represent a diagnostic tool with which to define tumor staging in cancer treatment or even a therapeutic tool against cancer.


Asunto(s)
Yoduro Peroxidasa/metabolismo , Neoplasias/enzimología , Animales , Humanos , Yoduro Peroxidasa/genética , Neoplasias/genética , Neoplasias/metabolismo , Hormonas Tiroideas/metabolismo
17.
Thyroid ; 31(7): 1114-1126, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33509032

RESUMEN

Background: Many physiological effects of thyroid hormone (TH) are mediated by its canonical action via nuclear receptors (TH receptor α and ß [TRα and TRß]) to regulate transcription of target genes. Heterozygous dominant negative mutations in human TRα mediate resistance to thyroid hormone alpha (RTHα), characterized by features of hypothyroidism (e.g., skeletal dysplasia, neurodevelopmental retardation, constipation) in specific tissues, but near-normal circulating TH concentrations. Hitherto, 41 RTHα cases have been recorded worldwide. Methods: RTHα cases (n = 10) attending a single center underwent cutaneous assessment, recording skin lesions. Lesions excised from different RTHα patients were analyzed histologically and profiled for cellular markers of proliferation and oncogenic potential. Proliferative characteristics of dermal fibroblasts and inducible pluripotent stem cell (iPSC)-derived keratinocytes from patients and control subjects were analyzed. Results: Multiple skin tags and nevi were recorded in all cases, mainly in the head and neck area with a predilection for flexures. The affected patients had highly deleterious mutations (p.E403X, p.E403K, p.F397fs406X, p.A382PfsX7) involving TRα1 alone or mild/moderate loss-of-function mutations (p.A263V, p.L274P) common to TRα1 and TRα2 isoforms. In four patients, although lesions excised for cosmetic reasons were benign intradermal melanocytic nevi histologically, they significantly overexpressed markers of cell proliferation (K17, cyclin D1) and type 3 deiodinase. In addition, oncogenic markers typical of basal cell carcinoma (Gli-1, Gli-2, Ptch-1, n = 2 cases) and melanoma (c-kit, MAGE, CDK4, n = 1) were markedly upregulated in skin lesions. Cell cycle progression and proliferation of TRα mutation-containing dermal fibroblasts and iPSC-derived keratinocytes from patients were markedly increased. Conclusions: Our observations highlight frequent occurrence of skin tags and benign melanocytic nevi in RTHα, with cutaneous cells from patients being in a hyperproliferative state. Such excess of skin lesions, including nevi expressing oncogenic markers, indicates that dermatologic surveillance of RTHα patients, monitoring lesions for features that are suspicious for neoplastic change, is warranted.


Asunto(s)
Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Nevo Pigmentado/genética , Neoplasias Cutáneas/genética , Receptores alfa de Hormona Tiroidea/genética , Adolescente , Adulto , Ciclo Celular/genética , Niño , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Nevo Pigmentado/patología , Fenotipo , Neoplasias Cutáneas/patología
18.
Eur J Cancer ; 138: 1-10, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32818762

RESUMEN

BACKGROUND: RAS mutations are the only validated biomarkers in metastatic colorectal cancer (mCRC) for anti-epidermal growth factor receptor (EGFR) therapy. Limited clinical information is available on AXL expression, marker of epithelial to mesenchymal transition, in mCRC. METHODS: AXL was retrospectively assessed by immunohistochemistry in 307 patients. RAS wild-type (WT) patients (N = 136) received first-line anti-EGFR-based therapy; RAS mutant patients (N = 171) received anti-angiogenic-based regimens. Preclinical experiments were performed using human RAS WT CRC cell lines and xenograft models. AXL RNA levels were assessed in a cohort of patients with available samples at baseline and at progression to anti-EGFR treatment and in the GSE5851 dataset. RESULTS: AXL was expressed in 55/307 tumour tissues, correlating with worse survival in the overall population (AXL-positive, 23.7 months; AXL-negative, 30.8 months; HR, 1.455, P = 0.032) and in RAS WT patients (AXL-positive, 23.0 months; AXL-negative, 35.8 months; HR,1.780, P = 0.032). Progression-free survival (PFS) in the RAS WT cohort was shorter in the AXL-positive cohort (6.2 months versus 12.1 months; HR, 1.796, P = 0.013). Three-dimensional cultures obtained from a patient following anti-EGFR therapy resulted AXL-positive, showing resistance to anti-EGFR drugs and sensitivity to AXL inhibition. AXL transfection in CRC cell lines induced AXL overexpression and resistance to the EGFR blockade. At progression to cetuximab, 2/10 SW48-tumour xenograft mice showed AXL expression. Consistently, AXL RNA levels increased in 5/7 patients following anti-EGFR therapy. Moreover, in the GSE5851 dataset higher AXL RNA levels correlated with worse PFS with cetuximab in KRAS-exon2 WT chemorefractory patients. CONCLUSIONS: AXL is a marker of poor prognosis in mCRC with consistent clinical and preclinical evidences of involvement in primary and acquired resistance to anti-EGFR drugs in RAS WT patients.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Genes ras , Proteínas Proto-Oncogénicas/análisis , Proteínas Tirosina Quinasas Receptoras/análisis , Animales , Biomarcadores , Línea Celular Tumoral , Neoplasias Colorrectales/química , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Humanos , Ratones , Metástasis de la Neoplasia , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa del Receptor Axl
19.
Cancers (Basel) ; 12(3)2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197405

RESUMEN

Type 2 deiodinase (D2), the principal activator of thyroid hormone (TH) signaling in target tissues, is expressed in cutaneous squamous cell carcinomas (SCCs) during late tumorigenesis, and its repression attenuates the invasiveness and metastatic spread of SCC. Although D2 plays multiple roles in cancer progression, nothing is known about the mechanisms regulating D2 in cancer. To address this issue, we investigated putative upstream regulators of D2 in keratinocyte carcinomas. We found that the expression of D2 in SCC cells is positively regulated by the NANOG transcription factor, whose expression, besides being causally linked to embryonic stemness, is associated with many human cancers. We also found that NANOG binds to the D2 promoter and enhances D2 transcription. Notably, blockage of D2 activity reduced NANOG-induced cell migration as well as the expression of key genes involved in epithelial-mesenchymal transition in SCC cells. In conclusion, our study reveals a link among endogenous endocrine regulators of cancer, thyroid hormone and its activating enzyme, and the NANOG regulator of cancer biology. These findings could provide the basis for the development of TH inhibitors as context-dependent anti-tumor agents.

20.
Thyroid ; 30(7): 1066-1078, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32111151

RESUMEN

Background: Thyroid hormones (THs) are key regulators of development, tissue differentiation, and maintenance of metabolic balance in virtually every cell of the body. Accordingly, severe alteration of TH action during fetal life leads to permanent deficits in humans. The skin is among the few adult tissues expressing the oncofetal protein type 3 deiodinase (D3), the TH inactivating enzyme. Here, we demonstrate that D3 is dynamically regulated during epidermal ontogenesis. Methods: To investigate the function of D3 in a postdevelopmental context, we used a mouse model of conditional epidermal-specific D3 depletion. Loss of D3 resulted in tissue hypoplasia and enhanced epidermal differentiation in a cell-autonomous manner. Results: Accordingly, wound healing repair and hair follicle cycle were altered in the D3-depleted epidermis. Further, in vitro ablation of D3 in primary culture of keratinocytes indicated that various markers of stratified epithelial layers were upregulated, thereby confirming the pro-differentiative action of D3 depletion and the consequent increased intracellular triiodothyronine levels. Notably, loss of D3 reduced the clearance of systemic TH in vivo, thereby demonstrating the critical requirement for epidermal D3 in the maintenance of TH homeostasis. Conclusion: In conclusion, our results show that the D3 enzyme is a key TH-signaling component in the skin, thereby providing a striking example of a physiological context for deiodinase-mediated TH metabolism, as well as a rationale for therapeutic manipulation of deiodinases in pathophysiological contexts.


Asunto(s)
Diferenciación Celular/genética , Epidermis/metabolismo , Yoduro Peroxidasa/metabolismo , Queratinocitos/metabolismo , Animales , Homeostasis/fisiología , Yoduro Peroxidasa/genética , Queratinocitos/citología , Ratones , Ratones Noqueados , Hormonas Tiroideas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...