Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 313: 137420, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36460151

RESUMEN

Hydrogen (H2) separation and purification is challenging because of the high purity and recovery requirements in particular applications, as well as the critical properties of H2 and its associated components. Unlike pressure swing adsorption, cryogenic- and membrane-based technologies are currently employed for H2 separation. Membrane-assisted (case-I) and cryogenic-assisted (case-II) separation and purification of H2 were evaluated in this study in terms of the energy, exergy, and economic aspects of the processes. In case-I and case-II, H2 was first produced from synthesis gas via the water-gas shift reaction and was then separated from other components using membrane and cryogenic systems, respectively. Additionally, an organic Rankine cycle was integrated with the water-gas shift reactors to recover the waste heat. A well-known commercial process simulation software, Aspen Hysys® v11, was employed to simulate both processes. Energy analysis revealed that case-I has a lower energy consumption (0.50 kWh/kg) than case-II (2.01 kWh/kg). However, low H2 purity and recovery rates are the main limitations of case-I. In terms of exergy, the H2 separation section in case-I exhibited a higher efficiency (28.4%) than case-II (14.7%). Furthermore, the economic evaluation showed that case-I was more expensive ($17.7 M) than case-II ($10.2 M) because of the high cost of the compressors required. In conclusion, this study could assist industry practitioners and academic researchers in selecting optimal H2 separation and purification technologies for improving the overall H2 economy.


Asunto(s)
Hidrógeno , Agua , Calor , Adsorción
2.
Chemosphere ; 308(Pt 3): 136357, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36084820

RESUMEN

Membrane-based natural gas liquid (NGL) recovery processes are still far from their large-scale applications owing to communication gaps among academic researchers and industry practitioners. A comprehensive process systems engineering (PSE) assessment of membrane-based NGL recovery processes is required to determine their commercial suitability. This PSE-based review presents the technical and economic aspects of standalone and integrated membrane processes. Literature review shows that polymeric membranes (e.g., cellulose acetate) are primarily evaluated in NGL recovery processes despite their low separation efficiencies. So far, multiple multistage membrane models with standalone and integrated designs have been suggested by analyzing different configurations to improve separation efficiency. In standalone processes, cellulose acetate membrane modules with high selectivity ratio can improve methane recovery by up to 100%. Absorption or cryogenic integrated processes exhibit high methane recovery (up to 99%) but demonstrate high energy consumption. The integrated absorption-membrane process is more capital cost intensive (i.e., 0.41 m$) than the cryogenic-membrane process (0.39 m$). Furthermore, in this review, the key challenges encountered by membrane processes and related issues are identified to improve their commercial viability by capitalizing on their maximum potential benefits. The major challenges associated with membrane processes constitute the lack of rigorous multistage membrane models and inflexibility in product purity and recovery. The policy implications and future directions suggest that owing to the growing demand for NGLs, membranes that can sustain varying natural gas compositions and conditions may be required. This PSE assessment will help process engineers and policymakers to improve natural gas supply chain economics.


Asunto(s)
Metano , Gas Natural
3.
Sci Total Environ ; 841: 156743, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35716749

RESUMEN

The waste solvent is unavoidably generated from the high solvent dependable processes. One of them is the semiconductor industry. The waste solvent is frequently incinerated to eliminate hazardous waste and this practice raises the issue of environmental and treatment costs. Thus, recovery of waste solvent is a substantial environmental mitigation option. This study explores the recovery of multicomponent waste solvents from the semiconductor industry. To achieve a greener and energy-efficient process, the recovery process is proposed through investigation of mixture thermodynamic behavior, process design, optimization, economics, and integration of renewable energy for environmental advantages. Herein, Distillation, a practical technology option for solvent recovery, with green solvent for extractive distillation and a new approach using renewable energy in waste solvent recovery are explored. As the result, waste solvent recovery by distillation with conventional energy exhibits bold advantages to cost and lower carbon process compared to waste disposal. The integration of renewable energy with about 37 % share of conventional energy as the backup indicates the highest annual cost-saving and reduces about 89.4 % of annual carbon emission compared to carbon emission from waste disposal.


Asunto(s)
Carbono , Destilación , Análisis Costo-Beneficio , Semiconductores , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...