Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Foods ; 12(19)2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37835258

RESUMEN

Disgust associated with insect consumption is a significant challenge faced by the insect-based food industry. One cost-effective approach that managers can employ to increase consumer acceptance is by enhancing packaging design. The packaging represents a cheap and effective means of communication. It is also referred to as a silent seller. This study investigates the potential of packaging communication in reducing disgust towards insect-based products in Germany. In a survey, 422 participants were confronted with packaging designs representing different visual and informative elements. The results showed that images of familiar ingredients and transparent windows on the packaging are particularly effective in reducing disgust. The presence of the organic and specific Ento seals significantly increased the assumed food safety. Claims about protein content and sustainability were less effective. Cricket images had a significant impact on increasing disgust. Practical implications for managers who are seeking to address consumer resistance towards insect-based food products are discussed.

2.
Food Sci Nutr ; 9(1): 414-428, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33473303

RESUMEN

Due to the environmental and nutritional benefits of insects, their consumption would be one of the solutions to feed the growing human population. Despite the increasing interest in the use of insects as food and feed, consumer acceptance is the major obstacle to successful implementation in Western countries and we studied the factors that influence consumer acceptance in a group of university students from Germany and the Netherlands. In this exploratory research, a survey was conducted (n = 222). Socio-demographic and psychological factors were established from a theoretical review. In addition, we elaborated on questions regarding information on the health and environmental benefits of consuming insects. Initially, the data obtained are presented through descriptive statistics. The influence of the socio-demographic and psychological factors, and the information on the willingness to accept insects as animal feed and human food was analyzed using correlations and multiple linear regressions. Results showed more willingness to accept insects as animal feed than in human food. The acceptance among German and Dutch students seems to be driven by issues similar to those in other European countries, such as visual aspects and knowledge about the benefits. The effect of the information on willingness constitutes an important finding of this study, especially for the use of insects in animal feed, since most of the previous studies have focused on the use of insects as human food. Our data support the need to inform and educate consumers about the environmental and health benefits of entomophagy. We conclude that effective efforts to implement entomophagy could increase the level of familiarity with the insect food and inform (or educate) consumers about its benefits. Insights from this study are useful to address studies focusing on specific segments of possible early adopters and consequently addressing communication strategies in this market segmentation.

3.
Insects ; 11(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365691

RESUMEN

Plant-associated microbes may induce plant defenses against herbivores. Plants, in turn, can attract natural enemies, such as predators, using herbivore-induced plant volatiles. Intricate communication occurs between microorganisms, plants, and insects. Given that many aspects related to mechanisms involved in this symbiotic system remain unknown, we evaluated how beneficial soil-borne microorganisms can affect the interactions between plants, herbivores, and natural enemies. For this study, we established a multitrophic system composed of the predatory earwig Doru luteipes (Dermaptera: Forficulidae), arugula (Eruca sativa, Brassicaceae) as the host plant, Plutella xylostella (Lepidoptera: Plutellidae) larvae as a specialist herbivore, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae as a generalist herbivore, and Bacillus amyloliquefaciens as the plant growth-promoting rhizobacteria (PGPR), in a series of nocturnal olfactometry experiments. By assessing earwig preference towards herbivore-induced and PGPR-inoculated plants in different combinations, we showed that the interaction between rhizobacteria, plants, and herbivores can affect the predatory earwig's behavior. Furthermore, we observed a synergistic effect in which earwigs were attracted by plants that presented as PGPR inoculated and herbivore damaged, for both specialist and generalist herbivores. Our findings help fill the important knowledge gap regarding multitrophic interactions and should provide useful guidelines for their application to agricultural fields.

4.
Naturwissenschaften ; 104(9-10): 77, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28871442

RESUMEN

Numerous studies have demonstrated that entomophagous arthropods use herbivore-induced plant volatile (HIPV) blends to search for their prey or host. However, no study has yet focused on the response of nocturnal predators to volatile blends emitted by prey damaged plants. We investigated the olfactory behavioral responses of the night-active generalist predatory earwig Doru luteipes Scudder (Dermaptera: Forficulidae) to diurnal and nocturnal volatile blends emitted by maize plants (Zea mays) attacked by either a stem borer (Diatraea saccharalis) or a leaf-chewing caterpillar (Spodoptera frugiperda), both suitable lepidopteran prey. Additionally, we examined whether the earwig preferred odors emitted from short- or long-term damaged maize. We first determined the earwig diel foraging rhythm and confirmed that D. luteipes is a nocturnal predator. Olfactometer assays showed that during the day, although the earwigs were walking actively, they did not discriminate the volatiles of undamaged maize plants from those of herbivore damaged maize plants. In contrast, at night, earwigs preferred volatiles emitted by maize plants attacked by D. saccharalis or S. frugiperda over undamaged plants and short- over long-term damaged maize. Our GC-MS analysis revealed that short-term damaged nocturnal plant volatile blends were comprised mainly of fatty acid derivatives (i.e., green leaf volatiles), while the long-term damaged plant volatile blend contained mostly terpenoids. We also observed distinct volatile blend composition emitted by maize damaged by the different caterpillars. Our results showed that D. luteipes innately uses nocturnal herbivore-induced plant volatiles to search for prey. Moreover, the attraction of the earwig to short-term damaged plants is likely mediated by fatty acid derivatives.


Asunto(s)
Herbivoria , Animales , Cromatografía de Gases y Espectrometría de Masas , Hojas de la Planta , Spodoptera , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA