Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2315018121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625940

RESUMEN

Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gßγ and reduces Gßγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gß1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gßγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gßγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gß and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gßγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.


Asunto(s)
Proteínas Portadoras , Ubiquitina-Proteína Ligasas , Unión Proteica , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Portadoras/metabolismo , Ubiquitina/metabolismo , Proteínas Cullin/genética , Proteínas Cullin/metabolismo
2.
Int J Biol Macromol ; 265(Pt 1): 130844, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484809

RESUMEN

CHT7 is a regulator of quiescence repression in Chlamydomonas reinhardtii. Initially, CHT7's repression activity was thought to be managed by its DNA-binding CXC domain. Later, it was found that the CHT7-CXC domain is dispensable for CHT7's activities. Rather, CHT7's predicted protein domains were proposed to be involved in regulation activities by binding to other repressors in the cell. Yet, it remains unclear why and how CHT7 refrains its CXC domain from participating in any transcriptional activities. The question becomes more intriguing, since CXC binding regions are available in promoter regions of some of the misregulated genes in CHT7 mutant (cht7). Through biophysical experiments and molecular dynamics approaches, we studied the DNA recognition behavior of CHT7-CXC. The results indicate that this domain possesses sequence selectivity due to the differential binding abilities of its subdomains. Further, to understand if the case is that CXC loses its DNA binding capabilities in the vicinity of other repressors, we examined CHT7-CXC's DNA binding stability under the spatial constraint conditions created through fusing CHT7-CXC with AsLOV2. The results show limited ability of CHT7-CXC to withstand steric forces and provide insights to why and how algal cells may hold back CHT7-CXC's indulgence in quiescence repression. CLASSIFICATIONS: Biological Sciences, Biophysics and Computational Biology.


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Triglicéridos , Hidrólisis , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , ADN , Transcripción Genética
3.
PLoS Pathog ; 18(12): e1010994, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508467

RESUMEN

The emergence of new variants of SARS-CoV-2 necessitates unremitting efforts to discover novel therapeutic monoclonal antibodies (mAbs). Here, we report an extremely potent mAb named P4A2 that can neutralize all the circulating variants of concern (VOCs) with high efficiency, including the highly transmissible Omicron. The crystal structure of the P4A2 Fab:RBD complex revealed that the residues of the RBD that interact with P4A2 are a part of the ACE2-receptor-binding motif and are not mutated in any of the VOCs. The pan coronavirus pseudotyped neutralization assay confirmed that the P4A2 mAb is specific for SARS-CoV-2 and its VOCs. Passive administration of P4A2 to K18-hACE2 transgenic mice conferred protection, both prophylactically and therapeutically, against challenge with VOCs. Overall, our data shows that, the P4A2 mAb has immense therapeutic potential to neutralize the current circulating VOCs. Due to the overlap between the P4A2 epitope and ACE2 binding site on spike-RBD, P4A2 may also be highly effective against a number of future variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/química , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/terapia , Ratones Transgénicos , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
4.
Mol Aspects Med ; 81: 101005, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34311994

RESUMEN

Viruses with positive-sense single stranded RNA (+ssRNA) genomes are responsible for different diseases and represent a global health problem. In addition to developing new vaccines that protect against severe illness on infection, it is imperative to identify new antiviral molecules to treat infected patients. The genome of these RNA viruses generally codes for an enzyme with RNA dependent RNA polymerase (RdRP) activity. This molecule is centrally involved in the duplication of the RNA genome. Inhibition of this enzyme by small molecules will prevent duplication of the RNA genome and thus reduce the viral titer. An overview of the different therapeutic strategies used to inhibit RdRPs from +ssRNA viruses is provided, along with an analysis of these enzymes to highlight new binding sites for inhibitors.


Asunto(s)
Antivirales , Virus ARN , ARN Polimerasa Dependiente del ARN , Antivirales/uso terapéutico , Humanos , Virus ARN/efectos de los fármacos , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/genética
5.
Int J Biol Macromol ; 168: 272-278, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33309661

RESUMEN

SARS-CoV-2is the causative agent for the ongoing COVID19 pandemic, and this virus belongs to the Coronaviridae family. The nsp14 protein of SARS-CoV-2 houses a 3' to 5' exoribonuclease activity responsible for removing mismatches that arise during genome duplication. A homology model of nsp10-nsp14 complex was used to carry out in silico screening to identify molecules among natural products, or FDA approved drugs that can potentially inhibit the activity of nsp14. This exercise showed that ritonavir might bind to the exoribonuclease active site of the nsp14 protein. A model of the SARS-CoV-2-nsp10-nsp14 complex bound to substrate RNA showed that the ritonavir binding site overlaps with that of the 3' nucleotide of substrate RNA. A comparison of the calculated energies of binding for RNA and ritonavir suggested that the drug may bind to the active site of nsp14 with significant affinity. It is, therefore, possible that ritonavir may prevent association with substrate RNA and thus inhibit the exoribonuclease activity of nsp14. Overall, our computational studies suggest that ritonavir may serve as an effective inhibitor of the nsp14 protein. nsp14 is known to attenuate the inhibitory effect of drugs that function through premature termination of viral genome replication. Hence, ritonavir may potentiate the therapeutic properties of drugs such as remdesivir, favipiravir and ribavirin.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Exorribonucleasas/antagonistas & inhibidores , Ritonavir/farmacología , SARS-CoV-2/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Antivirales/administración & dosificación , Antivirales/química , COVID-19/virología , Dominio Catalítico , Simulación por Computador , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Quimioterapia Combinada , Exorribonucleasas/química , Exorribonucleasas/genética , Genoma Viral/efectos de los fármacos , Humanos , Simulación de Dinámica Molecular , Pandemias , Ritonavir/administración & dosificación , Ritonavir/química , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos
6.
IUBMB Life ; 72(10): 2112-2120, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32812340

RESUMEN

SARS-CoV-2 is the causative agent for the ongoing COVID19 pandemic, and this virus belongs to the Coronaviridae family. Like other members of this family, the virus possesses a positive-sense single-stranded RNA genome. The genome encodes for the nsp12 protein, which houses the RNA-dependent-RNA polymerase (RdRP) activity responsible for the replication of the viral genome. A homology model of nsp12 was prepared using the structure of the SARS nsp12 (6NUR) as a model. The model was used to carry out in silico screening to identify molecules among natural products, or Food and Drug Administration-approved drugs that can potentially inhibit the activity of nsp12. This exercise showed that vitamin B12 (methylcobalamin) may bind to the active site of the nsp12 protein. A model of the nsp12 in complex with substrate RNA and incoming NTP showed that vitamin B12 binding site overlaps with that of the incoming nucleotide. A comparison of the calculated energies of binding for RNA plus NTP and methylcobalamin suggested that the vitamin may bind to the active site of nsp12 with significant affinity. It is, therefore, possible that methylcobalamin binding may prevent association with RNA and NTP and thus inhibit the RdRP activity of nsp12. Overall, our computational studies suggest that methylcobalamin form of vitamin B12 may serve as an effective inhibitor of the nsp12 protein.


Asunto(s)
Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Genoma Viral , SARS-CoV-2/enzimología , Vitamina B 12/farmacología , Secuencia de Aminoácidos , Antivirales/química , Sitios de Unión , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Ensayos Analíticos de Alto Rendimiento , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Medicamentos bajo Prescripción/química , Medicamentos bajo Prescripción/farmacología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Termodinámica , Interfaz Usuario-Computador , Vitamina B 12/química
7.
Sci Rep ; 10(1): 11157, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636411

RESUMEN

The DNA polymerase module of the Pfprex enzyme (PfpPol) is responsible for duplication of the genome of the apicoplast organelle in the malaria parasite. We show that PfpPol can misincorporate oxidized nucleotides such as 8oxodGTP opposite dA. This event gives rise to transversion mutations that are known to lead to adverse physiological outcomes. The apicoplast genome is particularly vulnerable to the harmful effects of 8oxodGTP due to very high AT content (~ 87%). We show that the proofreading activity of PfpPol has the unique ability to remove the oxidized nucleotide from the primer terminus. Due to this property, the proofreading domain of PfpPol is able to prevent mutagenesis of the AT-rich apicoplast genome and neutralize the deleterious genotoxic effects of ROS generated in the apicoplast due to normal metabolic processes. The proofreading activity of the Pfprex enzyme may, therefore, represent an attractive target for therapeutic intervention. Also, a survey of DNA repair pathways shows that the observed property of Pfprex constitutes a novel form of dynamic error correction wherein the repair of promutagenic damaged nucleotides is concomitant with DNA replication.


Asunto(s)
Apicoplastos/metabolismo , Reparación del ADN , Nucleótidos de Desoxiguanina/metabolismo , Complejos Multienzimáticos/fisiología , Mutagénesis/genética , Nucleótidos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/fisiología , Apicoplastos/genética , Genoma de Protozoos/genética , Complejos Multienzimáticos/metabolismo , Oxidación-Reducción , Plasmodium falciparum/genética , Proteínas Protozoarias/metabolismo
8.
J Mol Biol ; 432(2): 324-342, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31628946

RESUMEN

Methylation of genomic DNA can influence the transcription profile of an organism and may generate phenotypic diversity for rapid adaptation in a dynamic environment. M.HpyAXI is a Type III DNA methyltransferase present in Helicobacter pylori and is upregulated at low pH. This enzyme may alter the expression of critical genes to ensure the survival of this pathogen at low pH inside the human stomach. M.HpyAXI methylates the adenine in the target sequence (5'-GCAG-3') and shows maximal activity at pH 5.5. Type III DNA methyltransferases are found to form an inverted dimer in the functional form. We observe that M.HpyAXI forms a nonfunctional dimer at pH 8.0 that is incapable of DNA binding and methylation activity. However, at pH 5.5, two such dimers associate to form a tetramer that now includes two functional dimers that can bind and methylate the target DNA sequence. Overall, we observe that the pH-dependent tetramerization of M.HpyAXI ensures that the enzyme is licensed to act only in the presence of acid stress.


Asunto(s)
Metilación de ADN/genética , Infecciones por Helicobacter/genética , Helicobacter pylori/enzimología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Ácidos/metabolismo , Adenina/química , Adenina/metabolismo , Secuencia de Aminoácidos/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Infecciones por Helicobacter/enzimología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Humanos , Concentración de Iones de Hidrógeno , Cinética , Multimerización de Proteína/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/química , Estrés Fisiológico/genética , Especificidad por Sustrato
9.
Biochemistry ; 57(20): 2913-2922, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29750515

RESUMEN

The movement of the piggyBac transposon is mediated through its cognate transposase. The piggyBac transposase binds to the terminal repeats present at the ends of the transposon. This is followed by excision of the transposon and release of the nucleoprotein complex. The complex translocates, followed by integration of the transposon at the target site. Here, we show that the RING-finger domain (RFD) present toward the C-terminus of the transposase is vital for dimerization of this enzyme. The deletion of the RFD or the last seven residues of the RFD results in a monomeric protein that binds the terminal end of the transposon with nearly the same affinity as wild type piggyBac transposase. Surprisingly, the monomeric constructs exhibit >2-fold enhancement in the excision activity of the enzyme. Overall, our studies suggest that dimerization attenuates the excision activity of the piggyBac transposase. This attribute of the piggyBac transposase may serve to prevent excessive transposition of the piggyBac transposon that might be catastrophic for the host cell.


Asunto(s)
Elementos Transponibles de ADN/genética , Dominios RING Finger/genética , Transposasas/química , Dimerización , Vectores Genéticos/química , Vectores Genéticos/genética , Mutagénesis Insercional , Transposasas/genética
10.
J Biol Chem ; 291(3): 1235-42, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26511320

RESUMEN

Transcription factor-DNA interactions are central to gene regulation. Many transcription factors regulate multiple target genes and can bind sequences that do not conform strictly to the consensus. To understand the structural mechanism utilized by the transcription regulators to bind diverse target sequences, we have employed the repressor AraR from Bacillus subtilis as a model system. AraR is known to bind to eight different operator sites in the bacterial genome. Although there are differences in the sequences of four of these operators, ORE1, ORX1, ORA1, and ORR3, the AraR-DNA binding domain (AraR-DBD) as well as full-length AraR unexpectedly binds to each of these sequences with similar affinities as measured by fluorescence anisotropy experiments. We have determined crystal structures of AraR-DBD in complex with two different natural operators ORE1 and ORX1 up to 2.07 and 1.97 Å resolution, respectively. These structures were compared with the previously reported structures of AraR-DBD bound to two other natural operators (ORA1 and ORR3). Interactions of two molecules of AraR-DBD with the symmetric operator, ORE1, are identical, but their interaction with the non-symmetric operator ORX1 results in breakdown of the symmetry in protein-DNA interactions. The novel interactions observed are accompanied by local conformational change in the DNA. ChIP-sequencing (ChIP-Seq) data on other transcription factors has shown that they can bind to diverse targets, and hence the plasticity exhibited by AraR may be a general phenomenon. The ability of transcription factors to form alternate interactions may be important for employment in new functions and evolution of novel regulatory circuits.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Choque Térmico/metabolismo , Modelos Biológicos , Regiones Operadoras Genéticas , Proteínas Represoras/metabolismo , Secuencia Rica en At , Anisotropía , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Secuencia de Consenso , ADN Bacteriano/química , Polarización de Fluorescencia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Cinética , Conformación de Ácido Nucleico , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Polidesoxirribonucleótidos/química , Polidesoxirribonucleótidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Represoras/química , Proteínas Represoras/genética , Elementos de Respuesta , Alineación de Secuencia
11.
Structure ; 23(1): 56-67, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25497730

RESUMEN

The reduction in the efficacy of therapeutic antibiotics represents a global problem of increasing intensity and concern. Nitrofuran antibiotics act primarily through the formation of covalent adducts at the N(2) atom of the deoxyguanosine nucleotide in genomic DNA. These adducts inhibit replicative DNA polymerases (dPols), leading to the death of the prokaryote. N(2)-furfuryl-deoxyguanosine (fdG) represents a stable structural analog of the nitrofuran-induced adducts. Unlike other known dPols, DNA polymerase IV (PolIV) from E. coli can bypass the fdG adduct accurately with high catalytic efficiency. This property of PolIV is central to its role in reducing the sensitivity of E. coli toward nitrofuran antibiotics such as nitrofurazone (NFZ). We present the mechanism used by PolIV to bypass NFZ-induced adducts and thus improve viability of E. coli in the presence of NFZ. Our results can be used to develop specific inhibitors of PolIV that may potentiate the activity of nitrofuran antibiotics.


Asunto(s)
Aductos de ADN/metabolismo , ADN Polimerasa beta/química , ADN Polimerasa beta/metabolismo , Farmacorresistencia Bacteriana , Nitrofurazona/farmacología , Compuestos de Nitrógeno/metabolismo , Antibacterianos/farmacología , Cristalografía por Rayos X , Aductos de ADN/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Especies de Nitrógeno Reactivo/metabolismo
12.
Nucleic Acids Res ; 41(9): 5104-14, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23525461

RESUMEN

The Y-family DNA polymerase IV or PolIV (Escherichia coli) is the founding member of the DinB family and is known to play an important role in stress-induced mutagenesis. We have determined four crystal structures of this enzyme in its pre-catalytic state in complex with substrate DNA presenting the four possible template nucleotides that are paired with the corresponding incoming nucleotide triphosphates. In all four structures, the Ser42 residue in the active site forms interactions with the base moieties of the incipient Watson-Crick base pair. This residue is located close to the centre of the nascent base pair towards the minor groove. In vitro and in vivo assays show that the fidelity of the PolIV enzyme increases drastically when this Ser residue was mutated to Ala. In addition, the structure of PolIV with the mismatch A:C in the active site shows that the Ser42 residue plays an important role in stabilizing dCTP in a conformation compatible with catalysis. Overall, the structural, biochemical and functional data presented here show that the Ser42 residue is present at a strategic location to stabilize mismatches in the PolIV active site, and thus facilitate the appearance of transition and transversion mutations.


Asunto(s)
ADN Polimerasa beta/química , ADN/química , Proteínas de Escherichia coli/química , Mutación , Serina/química , Emparejamiento Base , Dominio Catalítico , ADN/biosíntesis , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxicitosina/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...