Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 3497, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273210

RESUMEN

Oxygen is a key regulator of both development and homeostasis. To study the role of oxygen, a variety of in vitro and ex vivo cell and tissue models have been used in biomedical research. However, because of ambiguity surrounding the level of oxygen that cells experience in vivo, the cellular pathway related to oxygenation state and hypoxia have been inadequately studied in many of these models. Here, we devised a method to determine the oxygen tension in bone marrow monocytes using two-photon phosphorescence lifetime imaging microscopy with the cell-penetrating phosphorescent probe, BTPDM1. Phosphorescence lifetime imaging revealed the physiological level of oxygen tension in monocytes to be 5.3% in live mice exposed to normal air. When the mice inhaled hypoxic air, the level of oxygen tension in bone marrow monocytes decreased to 2.4%. By performing in vitro cell culture experiment within the physiological range of oxygen tension, hypoxia changed the molecular phenotype of monocytes, leading to enhanced the expression of CD169 and CD206, which are markers of a unique subset of macrophages in bone marrow, osteal macrophages. This current study enables the determination of the physiological range of oxygen tension in bone marrow with spatial resolution at a cellular level and application of this information on oxygen tension in vivo to in vitro assays. Quantifying oxygen tension in tissues can provide invaluable information on metabolism under physiological and pathophyisological conditions. This method will open new avenues for research on oxygen biology.


Asunto(s)
Médula Ósea , Microscopía , Animales , Médula Ósea/metabolismo , Hipoxia/metabolismo , Ratones , Monocitos/metabolismo , Oxígeno/metabolismo , Fotones
2.
EMBO Rep ; 22(12): e53035, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34661337

RESUMEN

Oxygen plays an important role in diverse biological processes. However, since quantitation of the partial pressure of cellular oxygen in vivo is challenging, the extent of oxygen perturbation in situ and its cellular response remains underexplored. Using two-photon phosphorescence lifetime imaging microscopy, we determine the physiological range of oxygen tension in osteoclasts of live mice. We find that oxygen tension ranges from 17.4 to 36.4 mmHg, under hypoxic and normoxic conditions, respectively. Physiological normoxia thus corresponds to 5% and hypoxia to 2% oxygen in osteoclasts. Hypoxia in this range severely limits osteoclastogenesis, independent of energy metabolism and hypoxia-inducible factor activity. We observe that hypoxia decreases ten-eleven translocation (TET) activity. Tet2/3 cooperatively induces Prdm1 expression via oxygen-dependent DNA demethylation, which in turn activates NFATc1 required for osteoclastogenesis. Taken together, our results reveal that TET enzymes, acting as functional oxygen sensors, regulate osteoclastogenesis within the physiological range of oxygen tension, thus opening new avenues for research on in vivo response to oxygen perturbation.


Asunto(s)
Desmetilación del ADN , Osteoclastos , Animales , Diferenciación Celular/genética , Hipoxia de la Célula , Hipoxia/metabolismo , Ratones , Osteoclastos/metabolismo , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...