Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Intervalo de año de publicación
1.
Microorganisms ; 11(6)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37375060

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and causes toxoplasmosis infections, a disease that affects a quarter of the world's population and has no effective cure. Epigenetic regulation is one of the mechanisms controlling gene expression and plays an essential role in all organisms. Lysine deacetylases (KDACs) act as epigenetic regulators affecting gene silencing in many eukaryotes. Here, we focus on TgKDAC4, an enzyme unique to apicomplexan parasites, and a class IV KDAC, the least-studied class of deacetylases so far. This enzyme shares only a portion of the specific KDAC domain with other organisms. Phylogenetic analysis from the TgKDAC4 domain shows a putative prokaryotic origin. Surprisingly, TgKDAC4 is located in the apicoplast, making it the only KDAC found in this organelle to date. Transmission electron microscopy assays confirmed the presence of TgKDAC4 in the periphery of the apicoplast. We identified possible targets or/and partners of TgKDAC4 by immunoprecipitation assays followed by mass spectrometry analysis, including TgCPN60 and TgGAPDH2, both located at the apicoplast and containing acetylation sites. Understanding how the protein works could provide new insights into the metabolism of the apicoplast, an essential organelle for parasite survival.

2.
Microorganisms, v. 11, n. 6, 1558, jun. 2023
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4955

RESUMEN

Toxoplasma gondii is an obligate intracellular parasite of the phylum Apicomplexa and causes toxoplasmosis infections, a disease that affects a quarter of the world’s population and has no effective cure. Epigenetic regulation is one of the mechanisms controlling gene expression and plays an essential role in all organisms. Lysine deacetylases (KDACs) act as epigenetic regulators affecting gene silencing in many eukaryotes. Here, we focus on TgKDAC4, an enzyme unique to apicomplexan parasites, and a class IV KDAC, the least-studied class of deacetylases so far. This enzyme shares only a portion of the specific KDAC domain with other organisms. Phylogenetic analysis from the TgKDAC4 domain shows a putative prokaryotic origin. Surprisingly, TgKDAC4 is located in the apicoplast, making it the only KDAC found in this organelle to date. Transmission electron microscopy assays confirmed the presence of TgKDAC4 in the periphery of the apicoplast. We identified possible targets or/and partners of TgKDAC4 by immunoprecipitation assays followed by mass spectrometry analysis, including TgCPN60 and TgGAPDH2, both located at the apicoplast and containing acetylation sites. Understanding how the protein works could provide new insights into the metabolism of the apicoplast, an essential organelle for parasite survival.

3.
mSphere ; 7(6): e0040322, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36468865

RESUMEN

Chromatin dynamics can regulate all DNA-dependent processes. Access to DNA within chromatin is orchestrated mainly by histones and their posttranslational modifications (PTMs). Like other eukaryotes, the apicomplexan parasite Toxoplasma gondii encodes four canonical histones and five histone variants. In contrast, the linker histone (H1) has never been identified in apicomplexan parasites. In other eukaryotes, histone H1 compacts the chromatin by linking the nucleosome and increasing the DNA compaction. H1 is a multifunctional protein and can be involved in different steps of DNA metabolism or associated with protein complexes related to distinct biological processes. We have identified a novel protein in T. gondii ("TgH1-like") that, although lacking the globular domain of mammalian H1, is remarkably like the H1-like proteins of bacteria and trypanosomatids. Our results demonstrate that TgH1-like is a nuclear protein associated with chromatin and other histones. Curiously, TgH1-like is also in the nucleolus and associated with ribosomal proteins, indicating a versatile function in this parasite. Although knockout of the tgh1-like gene does not affect the cell cycle, it causes endopolygeny and asynchronous division. Interestingly, mutation of posttranslationally modified amino acids results in defects in cell division like those in the Δtgh1-like mutant, showing that these sites are important for protein function. Furthermore, in the bradyzoite stage, this protein is expressed only in dividing parasites, reinforcing its importance in cell division. Indeed, the absence of TgH1-like decreases compaction of peripheral chromatin, confirming its role in the chromatin modulation in T. gondii. IMPORTANCE Histone H1, or linker histone, is an important protein that binds to the nucleosome, aiding chromatin compaction. Here, we characterize for the first time a linker histone in T. gondii, named TgH1-like. It is a small and basic protein that corresponds only to the C-terminal portion of the human H1 but is similar to histone H1 from trypanosomatids and bacteria. TgH1-like is located in the nucleus, interacts with nucleosome histones, and acts in chromatin structure and cell division. Our findings show for the first time the presence of a histone H1 protein in an apicomplexan parasite and will provide new insights into cell division and chromatin dynamics in T. gondii and related parasites.


Asunto(s)
Fenómenos Biológicos , Toxoplasma , Animales , Humanos , Histonas/genética , Nucleosomas , Toxoplasma/genética , Toxoplasma/metabolismo , Cromatina , ADN , División Celular , Ribosomas/metabolismo , Mamíferos
5.
BMC Genomics ; 23(1): 128, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35164683

RESUMEN

BACKGROUND: Toxoplasma gondii is a protozoan parasite that differentiates from acute tachyzoite stages to latent bradyzoite forms in response to environmental cues that modify the epigenome. We studied the distribution of the histone variants CenH3, H3.3, H2A.X, H2A.Z and H2B.Z, by genome-wide chromatin immunoprecipitation to understand the role of variant histones in developmental transitions of T. gondii parasites. RESULTS: H3.3 and H2A.X were detected in telomere and telomere associated sequences, whereas H3.3, H2A.X and CenH3 were enriched in centromeres. Histones H2A.Z and H2B.Z colocalize with the transcriptional activation mark H3K4me3 in promoter regions surrounding the nucleosome-free region upstream of the transcription start site. The H2B.Z/H2A.Z histone pair also localizes to the gene bodies of genes that are silent but poised for activation, including bradyzoite stage-specific genes. The majority of H2A.X and H2A.Z/H2B.Z loci do not overlap, consistent with variant histones demarcating specific functional regions of chromatin. The extent of enrichment of H2A.Z/H2B.Z (and H3.3 and H2A.X) within the entire gene (5'UTR and gene body) reflects the timing of gene expression during the cell cycle, suggesting that dynamic turnover of H2B.Z/H2A.Z occurs during the tachyzoite cell cycle. Thus, the distribution of the variant histone H2A.Z/H2B.Z dimer defines active and developmentally silenced regions of the T. gondii epigenome including genes that are poised for expression. CONCLUSIONS: Histone variants mark functional regions of parasite genomes with the dynamic placement of the H2A.Z/H2B.Z dimer implicated as an evolutionarily conserved regulator of parasite and eukaryotic differentiation.


Asunto(s)
Histonas , Toxoplasma , Cromatina/genética , Expresión Génica , Histonas/genética , Nucleosomas/genética , Toxoplasma/genética
6.
mSphere, v. 7, n. 6, e00403-22, nov-dez. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4713

RESUMEN

Chromatin dynamics can regulate all DNA-dependent processes. Access to DNA within chromatin is orchestrated mainly by histones and their posttranslational modifications (PTMs). Like other eukaryotes, the apicomplexan parasite Toxoplasma gondii encodes four canonical histones and five histone variants. In contrast, the linker histone (H1) has never been identified in apicomplexan parasites. In other eukaryotes, histone H1 compacts the chromatin by linking the nucleosome and increasing the DNA compaction. H1 is a multifunctional protein and can be involved in different steps of DNA metabolism or associated with protein complexes related to distinct biological processes. We have identified a novel protein in T. gondii (“TgH1-like”) that, although lacking the globular domain of mammalian H1, is remarkably like the H1-like proteins of bacteria and trypanosomatids. Our results demonstrate that TgH1-like is a nuclear protein associated with chromatin and other histones. Curiously, TgH1-like is also in the nucleolus and associated with ribosomal proteins, indicating a versatile function in this parasite. Although knockout of the tgh1-like gene does not affect the cell cycle, it causes endopolygeny and asynchronous division. Interestingly, mutation of posttranslationally modified amino acids results in defects in cell division like those in the Δtgh1-like mutant, showing that these sites are important for protein function. Furthermore, in the bradyzoite stage, this protein is expressed only in dividing parasites, reinforcing its importance in cell division. Indeed, the absence of TgH1-like decreases compaction of peripheral chromatin, confirming its role in the chromatin modulation in T. gondii. Histone H1, or linker histone, is an important protein that binds to the nucleosome, aiding chromatin compaction. Here, we characterize for the first time a linker histone in T. gondii, named TgH1-like. It is a small and basic protein that corresponds only to the C-terminal portion of the human H1 but is similar to histone H1 from trypanosomatids and bacteria. TgH1-like is located in the nucleus, interacts with nucleosome histones, and acts in chromatin structure and cell division. Our findings show for the first time the presence of a histone H1 protein in an apicomplexan parasite and will provide new insights into cell division and chromatin dynamics in T. gondii and related parasites.

7.
Virol J ; 18(1): 222, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34789293

RESUMEN

BACKGROUND: We report a genomic surveillance of SARS-CoV-2 lineages circulating in Paraná, southern Brazil, from March 2020 to April 2021. Our analysis, based on 333 genomes, revealed that the first variants detected in the state of Paraná in March 2020 were the B.1.1.33 and B.1.1.28 variants. The variants B.1.1.28 and B.1.1.33 were predominant throughout 2020 until the introduction of the variant P.2 in August 2020 and a variant of concern (VOC), Gamma (P.1), in January 2021. The VOC Gamma, a ramification of the B.1.1.28 lineage first detected in Manaus (northern Brazil), has grown rapidly since December 2020 and was thought to be responsible for the deadly second wave of COVID-19 throughout Brazil. METHODS: The 333 genomic sequences of SARS-CoV-2 from March 2020 to April 2021 were generated as part of the genomic surveillance carried out by Fiocruz in Brazil Genomahcov Fiocruz. SARS-CoV-2 sequencing was performed using representative samples from all geographic areas of Paraná. Phylogenetic analyses were performed using the 333 genomes also included other SARS-CoV-2 genomes from the state of Paraná and other states in Brazil that were deposited in the GISAID. In addition, the time-scaled phylogenetic tree was constructed with up to 3 random sequences of the Gamma variant from each state in Brazil in each month of 2021. In this analysis we also added the sequences identified as the B.1.1.28 lineage of the Amazonas state and and the Gamma-like-II (P.1-like-II) lineage identified in different regions of Brazil. RESULTS: Phylogenetic analyses of the SARS-CoV-2 genomes that were previously classified as the VOC Gamma lineage by WHO/PANGO showed that some genomes from February to April 2021 branched in a monophyletic clade and that these samples grouped together with genomes recently described with the lineage Gamma-like-II. Additionally, a new mutation (E661D) in the spike (S) protein has been identified in nearly 10% of the genomes classified as the VOC Gamma from Paraná in March and April 2021.Finally, we analyzed the correlation between the lineage and the Gamma variant frequency, age group (patients younger or older than 60 years old) and the clinical data of 86 cases from the state of Paraná. CONCLUSIONS: Our results provided a reliable picture of the evolution of the SARS-CoV-2 pandemic in the state of Paraná characterized by the dominance of the Gamma strain, as well as a high frequencies of the Gamma-like-II lineage and the S:E661D mutation. Epidemiological and genomic surveillance efforts should be continued to unveil the biological relevance of the novel mutations detected in the VOC Gamma in Paraná.


Asunto(s)
COVID-19/virología , SARS-CoV-2 , Brasil/epidemiología , COVID-19/epidemiología , Brotes de Enfermedades , Humanos , Persona de Mediana Edad , Mutación , Filogenia , Vigilancia de la Población , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Secuenciación Completa del Genoma
8.
mSphere ; 6(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33408226

RESUMEN

Toxoplasmosis, a protozoan infection caused by Toxoplasma gondii, is estimated to affect around 2.5 billion people worldwide. Nevertheless, the side effects of drugs combined with the long period of therapy usually result in discontinuation of the treatment. New therapies should be developed by exploring peculiarities of the parasite's metabolic pathways, similarly to what has been well described in cancer cell metabolism. An example is the switch in the metabolism of cancer that blocks the conversion of pyruvate into acetyl coenzyme A in mitochondria. In this context, dichloroacetate (DCA) is an anticancer drug that reverts the tumor proliferation by inhibiting the enzymes responsible for this switch: the pyruvate dehydrogenase kinases (PDKs). DCA has also been used in the treatment of certain symptoms of malaria; however, there is no evidence of how this drug affects apicomplexan species. In this paper, we studied the metabolism of T. gondii and demonstrate that DCA also inhibits T. gondii's in vitro infection with no toxic effects on host cells. DCA caused an increase in the activity of pyruvate dehydrogenase followed by an unbalanced mitochondrial activity. We also observed morphological alterations frequently in mitochondria and in a few apicoplasts, essential organelles for parasite survival. To date, the kinases that potentially regulate the activity of pyruvate metabolism in both organelles have never been described. Here, we confirmed the presence in the genome of two putative kinases (T. gondii PDK [TgPDK] and T. gondii branched-chain α-keto acid dehydrogenase kinase [TgBCKDK]), verified their cellular localization in the mitochondrion, and provided in silico data suggesting that they are potential targets of DCA.IMPORTANCE Currently, the drugs used for toxoplasmosis have severe toxicity to human cells, and the treatment still lacks effective and safer alternatives. The search for novel drug targets is timely. We report here that the treatment of T. gondii with an anticancer drug, dichloroacetate (DCA), was effective in decreasing in vitro infection without toxicity to human cells. It is known that PDK is the main target of DCA in mammals, and this inactivation increases the conversion of pyruvate into acetyl coenzyme A and reverts the proliferation of tumor cells. Moreover, we verified the mitochondrial localization of two kinases that possibly regulate the activity of pyruvate metabolism in T. gondii, which has never been studied. DCA increased pyruvate dehydrogenase (PDH) activity in T. gondii, followed by an unbalanced mitochondrial activity, in a manner similar to what was previously observed in cancer cells. Thus, we propose the conserved kinases as potential regulators of pyruvate metabolism and interesting targets for new therapies.


Asunto(s)
Antiprotozoarios/farmacología , Apoptosis/efectos de los fármacos , Ácido Dicloroacético/farmacología , Fibroblastos/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvatos/metabolismo , Toxoplasma/efectos de los fármacos , Ácido Dicloroacético/química , Fibroblastos/parasitología , Humanos , Redes y Vías Metabólicas/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Oxidorreductasas , Toxoplasmosis/tratamiento farmacológico
9.
PLoS Negl Trop Dis ; 12(11): e0006875, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30422982

RESUMEN

In Trypanosoma cruzi, the etiologic agent of Chagas disease, Rad51 (TcRad51) is a central enzyme for homologous recombination. Here we describe the different roles of TcRad51 in DNA repair. Epimastigotes of T. cruzi overexpressing TcRAD51 presented abundant TcRad51-labeled foci before gamma irradiation treatment, and a faster growth recovery when compared to single-knockout epimastigotes for RAD51. Overexpression of RAD51 also promoted increased resistance against hydrogen peroxide treatment, while the single-knockout epimastigotes for RAD51 exhibited increased sensitivity to this oxidant agent, which indicates a role for this gene in the repair of DNA oxidative lesions. In contrast, TcRad51 was not involved in the repair of crosslink lesions promoted by UV light and cisplatin treatment. Also, RAD51 single-knockout epimastigotes showed a similar growth rate to that exhibited by wild-type ones after treatment with hydroxyurea, but an increased sensitivity to methyl methane sulfonate. Besides its role in epimastigotes, TcRad51 is also important during mammalian infection, as shown by increased detection of T. cruzi cells overexpressing RAD51, and decreased detection of single-knockout cells for RAD51, in both fibroblasts and macrophages infected with amastigotes. Besides that, RAD51-overexpressing parasites infecting mice also presented increased infectivity and higher resistance against benznidazole. We thus show that TcRad51 is involved in the repair of DNA double strands breaks and oxidative lesions in two different T. cruzi developmental stages, possibly playing an important role in the infectivity of this parasite.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas Protozoarias/metabolismo , Recombinasa Rad51/metabolismo , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/genética , Animales , Enfermedad de Chagas/parasitología , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Humanos , Masculino , Ratones , Estrés Oxidativo , Proteínas Protozoarias/genética , Recombinasa Rad51/genética , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/efectos de la radiación , Rayos Ultravioleta
10.
Mem Inst Oswaldo Cruz ; 113(6): e170531, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29924141

RESUMEN

BACKGROUND Eukaryotic ribonucleoprotein (RNP) granules are important for the regulation of RNA fate. RNP granules exist in trypanosomatids; however, their roles in controlling gene expression are still not understood. XRNA is a component of granules in Trypanosoma brucei but has not been investigated in Trypanosoma cruzi. OBJECTIVES This study aimed to investigate the TcXRNA dynamic assembly and its interaction with RNP components under conditions that affect the mRNA availability. METHODS We used in vitro metacyclogenesis of T. cruzi to observe changes in RNP granules during the differentiation process. TcXRNA expression was analysed by Western blot and immunofluorescence. Colocalisation assays were performed to investigate the interaction of TcXRNA with other RNP components. FINDINGS TcXRNA is constantly present during metacyclogenesis and is localised in cytoplasmic granules. TcXRNA does not colocalise with TcDHH1 and TcCAF1 granules in the cytoplasm. However, TcXRNA granules colocalise with mRNP granules at the nuclear periphery when mRNA processing is inhibited. MAIN CONCLUSIONS TcXRNA plays a role in mRNA metabolism as a component of mRNP granules whose assembly is dependent on mRNA availability. TcXRNA granules colocalise with distinct RNP granules at the nuclear periphery, suggesting that the perinuclear region is a regulatory compartment in T. cruzi mRNA metabolism.


Asunto(s)
Gránulos Citoplasmáticos/genética , Proteínas Protozoarias/genética , ARN Protozoario/genética , Ribonucleoproteínas/genética , Trypanosoma cruzi/citología , Western Blotting , Gránulos Citoplasmáticos/fisiología , Técnica del Anticuerpo Fluorescente , Membrana Nuclear/fisiología , Proteínas Protozoarias/fisiología , ARN Protozoario/fisiología , Ribonucleoproteínas/fisiología , Trypanosoma cruzi/genética
11.
Mem. Inst. Oswaldo Cruz ; 113(6): e170531, 2018. graf
Artículo en Inglés | LILACS | ID: biblio-955110

RESUMEN

BACKGROUND Eukaryotic ribonucleoprotein (RNP) granules are important for the regulation of RNA fate. RNP granules exist in trypanosomatids; however, their roles in controlling gene expression are still not understood. XRNA is a component of granules in Trypanosoma brucei but has not been investigated in Trypanosoma cruzi. OBJECTIVES This study aimed to investigate the TcXRNA dynamic assembly and its interaction with RNP components under conditions that affect the mRNA availability. METHODS We used in vitro metacyclogenesis of T. cruzi to observe changes in RNP granules during the differentiation process. TcXRNA expression was analysed by Western blot and immunofluorescence. Colocalisation assays were performed to investigate the interaction of TcXRNA with other RNP components. FINDINGS TcXRNA is constantly present during metacyclogenesis and is localised in cytoplasmic granules. TcXRNA does not colocalise with TcDHH1 and TcCAF1 granules in the cytoplasm. However, TcXRNA granules colocalise with mRNP granules at the nuclear periphery when mRNA processing is inhibited. MAIN CONCLUSIONS TcXRNA plays a role in mRNA metabolism as a component of mRNP granules whose assembly is dependent on mRNA availability. TcXRNA granules colocalise with distinct RNP granules at the nuclear periphery, suggesting that the perinuclear region is a regulatory compartment in T. cruzi mRNA metabolism.


Asunto(s)
Humanos , ARN/sangre , ARN Mensajero/análisis , Metaciclina/uso terapéutico , ARN Nuclear Pequeño
12.
Mol Biochem Parasitol ; 212: 55-67, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28137628

RESUMEN

In recent years, proteasome involvement in the damage response induced by ionizing radiation (IR) became evident. However, whether proteasome plays a direct or indirect role in IR-induced damage response still unclear. Trypanosoma cruzi is a human parasite capable of remarkable high tolerance to IR, suggesting a highly efficient damage response system. Here, we investigate the role of T. cruzi proteasome in the damage response induced by IR. We exposed epimastigotes to high doses of gamma ray and we analyzed the expression and subcellular localization of several components of the ubiquitin-proteasome system. We show that proteasome inhibition increases IR-induced cell growth arrest and proteasome-mediated proteolysis is altered after parasite exposure. We observed nuclear accumulation of 19S and 20S proteasome subunits in response to IR treatments. Intriguingly, the dynamic of 19S particle nuclear accumulation was more similar to the dynamic observed for Rad51 nuclear translocation than the observed for 20S. In the other hand, 20S increase and nuclear translocation could be related with an increase of its regulator PA26 and high levels of proteasome-mediated proteolysis in vitro. The intersection between the opposed peaks of 19S and 20S protein levels was marked by nuclear accumulation of both 20S and 19S together with Ubiquitin, suggesting a role of ubiquitin-proteasome system in the nuclear protein turnover at the time. Our results revealed the importance of proteasome-mediated proteolysis in T. cruzi IR-induced damage response suggesting that proteasome is also involved in T. cruzi IR tolerance. Moreover, our data support the possible direct/signaling role of 19S in DNA damage repair. Based on these results, we speculate that spatial and temporal differences between the 19S particle and 20S proteasome controls proteasome multiple roles in IR damage response.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Radiación Ionizante , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/efectos de la radiación , Ubiquitina/metabolismo , Reparación del ADN , Proteolisis , Respuesta de Proteína Desplegada
13.
Mol Biochem Parasitol ; 204(1): 1-10, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26602446

RESUMEN

The histone H4 from Trypanosomatids diverged from other eukaryotes in the N-terminus, a region that undergoes post-translation modifications involved in the control of gene expression, DNA replication, and chromatin assembly. Nonetheless, the N-terminus of Trypanosoma cruzi histone H4 is mainly acetylated at lysine 4. The lysines 10 and 14 are also acetylated, although at less extent, increasing during the S-phase or after DNA damage, which suggests a regulatory function. Here, we investigated the roles of these acetylations by expressing non-acetylated forms of histone H4 in T. cruzi. We found that histone H4 containing arginines at positions 10 or 14, to prevent acetylation were transported to the nucleus and inserted into the chromatin. However, their presence, even at low levels, interfered with DNA replication and transcription, causing a significant growth arrest of the cells. The absence of acetylation also increased the amount of soluble endogenous histones H3 and H4 and affected the interaction with Asf1, a histone chaperone. Therefore, acetylation of lysines 10 and 14 of the histone H4 in trypanosomes could be required for chromatin assembly and/or remodeling required for transcription and replication.


Asunto(s)
Replicación del ADN , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Proteínas Protozoarias/metabolismo , Transcripción Genética , Trypanosoma cruzi/genética , Acetilación , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Lisina/química , Procesamiento Proteico-Postraduccional
14.
Methods Mol Biol ; 1201: 177-91, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25388114

RESUMEN

Epigenetics is the study of heritable changes in gene expression that occur independent of the DNA sequence. Due to their intimacy with DNA, histones have a central role in chromatin structure and epigenetic regulation. Their tails are subject to posttranslational modifications (PTMs) that together with chromatin-remodeling proteins control the access of different proteins to DNA and allow a precise response to different environmental conditions. The first part of this chapter is dedicated to histone enrichment methods that allow the study of histones using techniques such as immunoblot or mass spectrometry for the mapping of the histone PTM network. Next we describe chromatin immunoprecipitation-based techniques (ChIP) for study of the epigenome. ChIP followed by microarray or next-generation sequencing enables the precise genomic localization of protein-DNA interactions. These techniques for genome-wide profiling of chromatin provide powerful and efficient tools to study the epigenome.


Asunto(s)
Epigénesis Genética , Epigenómica/métodos , Histonas/química , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Parásitos/genética , Animales , Cromatina , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo
15.
mBio ; 4(6): e00922-13, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24327343

RESUMEN

UNLABELLED: Epigenetic gene regulation has emerged as a major mechanism for gene regulation in all eukaryotes. Histones are small, basic proteins that constitute the major protein component of chromatin, and posttranslational modifications (PTM) of histones are essential for epigenetic gene regulation. The different combinations of histone PTM form the histone code for an organism, marking functional units of chromatin that recruit macromolecular complexes that govern chromatin structure and regulate gene expression. To characterize the repertoire of Toxoplasma gondii histone PTM, we enriched histones using standard acid extraction protocols and analyzed them with several complementary middle-down and bottom-up proteomic approaches with the high-resolution Orbitrap mass spectrometer using collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and/or electron transfer dissociation (ETD) fragmentation. We identified 249 peptides with unique combinations of PTM that comprise the T. gondii histone code. T. gondii histones share a high degree of sequence conservation with human histones, and many modifications are conserved between these species. In addition, T. gondii histones have unique modifications not previously identified in other species. Finally, T. gondii histones are modified by succinylation, propionylation, and formylation, recently described histone PTM that have not previously been identified in parasitic protozoa. The characterization of the T. gondii histone code will facilitate in-depth analysis of how epigenetic regulation affects gene expression in pathogenic apicomplexan parasites and identify a new model system for elucidating the biological functions of novel histone PTM. IMPORTANCE: Toxoplasma gondii is among the most common parasitic infections in humans. The transition between the different stages of the T. gondii life cycle are essential for parasite virulence and survival. These differentiation events are accompanied by significant changes in gene expression, and the control mechanisms for these transitions have not been elucidated. Important mechanisms that are involved in the control of gene expression are the epigenetic modifications that have been identified in several eukaryotes. T. gondii has a full complement of histone-modifying enzymes, histones, and variants. In this paper, we identify over a hundred PTM and a full repertoire of PTM combinations for T. gondii histones, providing the first large-scale characterization of the T. gondii histone code and an essential initial step for understanding how epigenetic modifications affect gene expression and other processes in this organism.


Asunto(s)
Epigénesis Genética , Código de Histonas , Procesamiento Proteico-Postraduccional , Toxoplasma/química , Toxoplasma/fisiología , Secuencia de Aminoácidos , Técnicas de Química Analítica , Secuencia Conservada , Proteoma/análisis , Proteínas Protozoarias/análisis
16.
J Eukaryot Microbiol ; 60(1): 101-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23206323

RESUMEN

Pin1-type peptidyl-prolyl cis/trans isomerases (PPIases) isomerise the peptide bond of specific phosphorylated (Ser/Thr)-Pro residues, regulating various cellular events. Previously, we reported a Pin1-type PPIase in Trypanosoma cruzi, but little is known about its function and subcellular localization. Immunofluorescence analysis revealed that in contrast with Pin1-like proteins from diverse organisms, TcPin1 mainly localized in the cytoplasm and was excluded from the nuclei. In addition, RNAi-mediated downregulation of TbPin1 in Trypanosoma brucei did not abolish cell proliferation. Using yeast two-hybrid assay, we identified a MORN domain-containing protein as putative Pin1-binding partners. These data suggest that Pin1-mediated signaling mechanism plays a different role in protozoan parasites.


Asunto(s)
Isomerasa de Peptidilprolil/genética , Trypanosoma brucei brucei/enzimología , Ciclo Celular , Regulación de la Expresión Génica , Microscopía Fluorescente , Datos de Secuencia Molecular , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Transfección , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma cruzi , Técnicas del Sistema de Dos Híbridos
17.
Trends Parasitol ; 28(5): 202-13, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22480826

RESUMEN

Chromatin structure plays a vital role in epigenetic regulation of protozoan parasite gene expression. Epigenetic gene regulation impacts upon parasite virulence, differentiation and cell-cycle control. Recent work in many laboratories has elucidated the functions of proteins that regulate parasite gene expression by chemical modification of constituent nucleosomes. A major focus of investigation has been the characterization of post-translational modifications (PTMs) of histones and the identification of the enzymes responsible. Despite conserved features and specificity common to all eukaryotes, parasite enzymes involved in chromatin modification have unique functions that regulate unique aspects of parasite biology.


Asunto(s)
Cromatina/metabolismo , Epigenómica , Eucariontes/genética , Eucariontes/metabolismo , Parásitos/genética , Parásitos/metabolismo , Animales , Regulación de la Expresión Génica , Histonas/metabolismo
18.
Mol Biochem Parasitol ; 183(2): 122-31, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22369885

RESUMEN

Specific DNA repair pathways from Trypanosoma cruzi are believed to protect genomic DNA and kinetoplast DNA (kDNA) from mutations. Particular pathways are supposed to operate in order to repair nucleotides oxidized by reactive oxygen species (ROS) during parasite infection, being 7,8-dihydro-8-oxoguanine (8oxoG) a frequent and highly mutagenic base alteration. If unrepaired, 8oxoG can lead to cytotoxic base transversions during DNA replication. In mammals, DNA polymerase beta (Polß) is mainly involved in base excision repair (BER) of oxidative damage. However its biological role in T. cruzi is still unknown. We show, by immunofluorescence localization, that T. cruzi DNA polymerase beta (Tcpolß) is restricted to the antipodal sites of kDNA in replicative epimastigote and amastigote developmental stages, being strictly localized to kDNA antipodal sites between G1/S and early G2 phase in replicative epimastigotes. Nevertheless, this polymerase was detected inside the mitochondrial matrix of trypomastigote forms, which are not able to replicate in culture. Parasites over expressing Tcpolß showed reduced levels of 8oxoG in kDNA and an increased survival after treatment with hydrogen peroxide when compared to control cells. However, this resistance was lost after treating Tcpolß overexpressors with methoxiamine, a potent BER inhibitor. Curiously, a presumed DNA repair focus containing Tcpolß was identified in the vicinity of kDNA of cultured wild type epimastigotes after treatment with hydrogen peroxide. Taken together our data suggest participation of Tcpolß during kDNA replication and repair of oxidative DNA damage induced by genotoxic stress in this organelle.


Asunto(s)
ADN Polimerasa beta/metabolismo , Reparación del ADN , Replicación del ADN , ADN de Cinetoplasto/metabolismo , Trypanosoma cruzi/enzimología , Microscopía Fluorescente , Mitocondrias/química , Mitocondrias/enzimología , Estrés Oxidativo , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
19.
Adv Parasitol ; 75: 251-83, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21820560

RESUMEN

The presence of nucleus in living organisms characterizes the Eukaryote domain. The nucleus compartmentalizes the genetic material surrounded by a double membrane called nuclear envelope. The nucleus has been observed since the advent of the light microscope, and sub-compartments such as nucleoli, diverse nuclear bodies and condensed chromosomes have been later recognized, being part of highly organized and dynamic structure. The significance and function of such organization has increased with the understanding of transcription, replication, DNA repair, recombination processes. It is now recognized as consequence of adding complexity and regulation in more complex eukaryotic cells. Here we provide a description of the actual stage of knowledge of the nuclear structure of Trypanosoma cruzi. As an early divergent eukaryote, it presents unique and/or reduced events of DNA replication, transcription and repair as well as RNA processing and transport to the cytosol. Nevertheless, it shows peculiar structure changes accordingly to the cell cycle and stage of differentiation. T. cruzi proliferates only as epimastigote and amastigote stages, and when these forms differentiate in trypomastigote forms, their cell cycle is arrested. This arrested stage is capable of invading mammalian cells and of surviving harsh conditions, such as the gut of the insect vector and mammalian macrophages. Transcription and replication decrease during transformation in trypomastigotes implicating large alterations in the nuclear structure. Recent evidences also suggest that T. cruzi nucleus respond to oxidative and nutritional stresses. Due to the phylogenetic proximity with other well-known trypanosomes, such as Trypanosoma brucei and Leishmania major, they are expected to have similar nuclear organization, although differences are noticed due to distinct life cycles, cellular organizations and the specific adaptations for surviving in different host environments. Therefore, the general features of T. cruzi nuclear structure regarding unique characteristics of this protozoan parasite will be described.


Asunto(s)
Núcleo Celular/ultraestructura , Cromatina/genética , Trypanosoma cruzi/genética , Animales , Ciclo Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Tamaño del Núcleo Celular , Enfermedad de Chagas/parasitología , Cromatina/metabolismo , Daño del ADN , Reparación del ADN , Replicación del ADN , Regulación de la Expresión Génica , Inestabilidad Genómica , Mamíferos , Membrana Nuclear/metabolismo , Estrés Oxidativo , ARN Polimerasa II/metabolismo , Transcripción Genética , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/ultraestructura
20.
Biochim Biophys Acta ; 1803(9): 1028-37, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20580912

RESUMEN

The parvulin family of peptidyl-prolyl cis/trans isomerases (PPIases) catalyzes the cis/trans isomerization of the peptide bonds preceding Pro residues. Eukaryotic parvulin-type PPIases have been shown to be involved in cell proliferation and cell cycle progression. Here we present the biochemical and molecular characterization of a novel multi-domain parvulin-type PPIase from the human pathogenic Trypanosoma cruzi, annotated as TcPar45. Like most other parvulins, Par45 has an N-terminal extension, but, in contrast to human Pin1, it contains a forkhead-associated domain (FHA) instead of a WW domain at the N-terminal end. Par45 shows a strong preference for a substrate with the basic Arg residue preceding Pro (Suc-Ala-Arg-Pro-Phe-NH-Np: k(cat)/K(M)=97.1 /M/s), like that found for human Par14. In contrast to human Pin1, but similarly to Par14, Par45 does not accelerate the cis/trans interconversion of acidic substrates containing Glu-Pro bonds. It is preferentially located in the parasite nucleus. Single RNA interference (RNAi)-mediated knock-down showed that there was a growth inhibition in procyclic Trypanosoma brucei cells. These results identify Par45 as a phosphorylation-independent parvulin required for normal cell proliferation in a unicellular eukaryotic cell.


Asunto(s)
Isomerasa de Peptidilprolil/aislamiento & purificación , Trypanosomatina/genética , Secuencia de Aminoácidos , Animales , Extractos Celulares/química , Células Cultivadas , Clonación Molecular , Prueba de Complementación Genética , Humanos , Datos de Secuencia Molecular , Organismos Modificados Genéticamente , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Filogenia , Homología de Secuencia de Aminoácido , Distribución Tisular , Transfección , Levaduras/genética , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...