Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7108, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925453

RESUMEN

Cortical activity patterns are strongly modulated by fast synaptic inhibition mediated through ionotropic, chloride-conducting receptors. Consequently, chloride homeostasis is ideally placed to regulate activity. We therefore investigated the stability of baseline [Cl-]i in adult mouse neocortex, using in vivo two-photon imaging. We found a two-fold increase in baseline [Cl-]i in layer 2/3 pyramidal neurons, from day to night, with marked effects upon both physiological cortical processing and seizure susceptibility. Importantly, the night-time activity can be converted to the day-time pattern by local inhibition of NKCC1, while inhibition of KCC2 converts day-time [Cl-]i towards night-time levels. Changes in the surface expression and phosphorylation of the cation-chloride cotransporters, NKCC1 and KCC2, matched these pharmacological effects. When we extended the dark period by 4 h, mice remained active, but [Cl-]i was modulated as for animals in normal light cycles. Our data thus demonstrate a daily [Cl-]i modulation with complex effects on cortical excitability.


Asunto(s)
Simportadores , Corteza Visual , Animales , Ratones , Cloruros/metabolismo , Simportadores/metabolismo , Células Piramidales/fisiología , Homeostasis , Corteza Visual/metabolismo
2.
Mol Autism ; 14(1): 28, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528484

RESUMEN

BACKGROUND: Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS: We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS: We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS: Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS: Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.


Asunto(s)
Trastorno del Espectro Autista , Problema de Conducta , Ratones , Animales , Trastorno del Espectro Autista/genética , Proteínas del Tejido Nervioso/genética , Neuronas , Proteínas de Microfilamentos
3.
Brain Commun ; 5(3): fcad170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37288314

RESUMEN

ß-Amyloid is one of the main pathological hallmarks of Alzheimer's disease and plays a major role in synaptic dysfunction. It has been demonstrated that ß-amyloid can elicit aberrant excitatory activity in cortical-hippocampal networks, which is associated with behavioural abnormalities. However, the mechanism of the spreading of ß-amyloid action within a specific circuitry has not been elucidated yet. We have previously demonstrated that the motion of microglia-derived large extracellular vesicles carrying ß-amyloid, at the neuronal surface, is crucial for the initiation and propagation of synaptic dysfunction along the entorhinal-hippocampal circuit. Here, using chronic EEG recordings, we show that a single injection of extracellular vesicles carrying ß-amyloid into the mouse entorhinal cortex could trigger alterations in the cortical and hippocampal activity that are reminiscent of those found in Alzheimer's disease mouse models and human patients. The development of EEG abnormalities was associated with progressive memory impairment as assessed by an associative (object-place context recognition) and non-associative (object recognition) task. Importantly, when the motility of extracellular vesicles, carrying ß-amyloid, was inhibited, the effect on network stability and memory function was significantly reduced. Our model proposes a new biological mechanism based on the extracellular vesicles-mediated progression of ß-amyloid pathology and offers the opportunity to test pharmacological treatments targeting the early stages of Alzheimer's disease.

4.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743315

RESUMEN

Mutations in the EPM2A gene encoding laforin cause Lafora disease (LD), a progressive myoclonic epilepsy characterized by drug-resistant seizures and progressive neurological impairment. To date, rodents are the only available models for studying LD; however, their use for drug screening is limited by regulatory restrictions and high breeding costs. To investigate the role of laforin loss of function in early neurodevelopment, and to screen for possible new compounds for treating the disorder, we developed a zebrafish model of LD. Our results showed the epm2a-/- zebrafish to be a faithful model of LD, exhibiting the main disease features, namely motor impairment and neuronal hyperexcitability with spontaneous seizures. The model also showed increased inflammatory response and apoptotic death, as well as an altered autophagy pathway that occurs early in development and likely contributes to the disease progression. Early administration of trehalose was found to be effective for rescuing motor impairment and neuronal hyperexcitability associated with seizures. Our study adds a new tool for investigating LD and might help to identify new treatment opportunities.


Asunto(s)
Enfermedad de Lafora , Animales , Enfermedad de Lafora/tratamiento farmacológico , Enfermedad de Lafora/genética , Enfermedad de Lafora/metabolismo , Mutación , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Convulsiones , Trehalosa/farmacología , Ubiquitina-Proteína Ligasas/genética , Pez Cebra/metabolismo
5.
Nat Commun ; 11(1): 6194, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273479

RESUMEN

Genetic mosaicism, a condition in which an organ includes cells with different genotypes, is frequently present in monogenic diseases of the central nervous system caused by the random inactivation of the X-chromosome, in the case of X-linked pathologies, or by somatic mutations affecting a subset of neurons. The comprehension of the mechanisms of these diseases and of the cell-autonomous effects of specific mutations requires the generation of sparse mosaic models, in which the genotype of each neuron is univocally identified by the expression of a fluorescent protein in vivo. Here, we show a dual-color reporter system that, when expressed in a floxed mouse line for a target gene, leads to the creation of mosaics with tunable degree. We demonstrate the generation of a knockout mosaic of the autism/epilepsy related gene PTEN in which the genotype of each neuron is reliably identified, and the neuronal phenotype is accurately characterized by two-photon microscopy.


Asunto(s)
Colorantes Fluorescentes/química , Genes Reporteros , Integrasas/metabolismo , Mosaicismo , Trastornos del Neurodesarrollo/genética , Potenciales de Acción , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Electroencefalografía , Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Trastornos del Neurodesarrollo/fisiopatología , Fosfohidrolasa PTEN/metabolismo , Tamoxifeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...