Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39024408

RESUMEN

Neuromuscular fatigue (NMF) induces temporary reductions in muscle force production capacity, affecting various aspects of motor function. While studies have extensively explored NMF's impact on muscle activation patterns and postural stability, its influence on motor adaptation processes remains less understood. This paper investigates the effects of localized NMF on motor adaptation during upright stance, focusing on reaching tasks. Utilizing a force field perturbation paradigm, participants performed reaching movements while standing upright before and after inducing NMF in the ankle dorsiflexor muscles. Results revealed that despite maintained postural stability, participants in the NMF group exhibited larger movement errors during reaching tasks, suggesting impaired motor adaptation. This was evident in both initial and terminal phases of adaptation, indicating a disruption in learning processes rather than a decreased adaptation rate. Analysis of electromyography activation patterns highlighted distinct strategies between groups, with the NMF group showing altered activation of both fatigued and non-fatigued muscles. Additionally, differences in co-activation patterns suggested compensatory mechanisms to prioritize postural stability despite NMF-induced disruptions. These findings underscore the complex interplay between NMF, motor adaptation, and postural control, suggesting a potential role for central nervous system mechanisms in mediating adaptation processes. Understanding these mechanisms has implications for sports performance, rehabilitation, and motor skill acquisition, where NMF may impact the learning and retention of motor tasks. Further research is warranted to elucidate the transient or long-term effects of NMF on motor adaptation and its implications for motor rehabilitation interventions.

2.
Front Sports Act Living ; 6: 1418598, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832309

RESUMEN

Introduction: Neuromuscular fatigue causes a transient reduction of muscle force, and alters the mechanisms of motor control. Whether these alterations increase the risk of anterior cruciate ligament (ACL) injury is still debated. Here we compare the biomechanics of single-leg drop jumps before and after the execution of a fatiguing exercise, evaluating whether this exercise causes biomechanical alterations typically associated with an increased risk of ACL lesion. The intensity of the fatiguing protocol was tailored to the aerobic capacity of each participant, minimizing potential differential effects due to inter-individual variability in fitness. Methods: Twenty-four healthy male volunteers performed single leg drop jumps, before and after a single-set fatiguing session on a cycle ergometer until exhaustion (cadence: 65-70 revolutions per minute). For each participant, the intensity of the fatiguing exercise was set to 110% of the power achieved at their anaerobic threshold, previously identified by means of a cardiopulmonary exercise test. Joint angles and moments, as well as ground reaction forces (GRF) before and after the fatiguing exercise were compared for both the dominant and the non-dominant leg. Results: Following the fatiguing exercise, the hip joint was more extended (landing: Δ=-2.17°, p = 0.005; propulsion: Δ=-1.83°, p = 0.032) and more abducted (landing: Δ=-0.72°, p = 0.01; propulsion: Δ=-1.12°, p = 0.009). Similarly, the knee joint was more extended at landing (non-dominant leg: Δ=-2.67°, p < 0.001; dominant: Δ=-1.4°, p = 0.023), and more abducted at propulsion (both legs: Δ=-0.99°, p < 0.001) and stabilization (both legs: Δ=-1.71°, p < 0.001) hence increasing knee valgus. Fatigue also caused a significant reduction of vertical GRF upon landing (Δ=-0.21 N/kg, p = 0.003), but not during propulsion. Fatigue did not affect joint moments significantly. Conclusion: The increased hip and knee extension, as well as the increased knee abduction we observed after the execution of the fatiguing exercise have been previously identified as risk factors for ACL injury. These results therefore suggest an increased risk of ACL injury after the execution of the participant-tailored fatiguing protocol proposed here. However, the reduced vertical GRF upon landing and the preservation of joint moments are intriguing, as they may suggest the adoption of protective strategies in the fatigued condition to be evaluated in future studied.

3.
Comput Biol Med ; 171: 108101, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340440

RESUMEN

BACKGROUND AND OBJECTIVE: Motion analysis is crucial for effective and timely rehabilitative interventions on people with motor disorders. Conventional marker-based (MB) gait analysis is highly time-consuming and calls for expensive equipment, dedicated facilities and personnel. Markerless (ML) systems may pave the way to less demanding gait monitoring, also in unsupervised environments (i.e., in telemedicine). However,scepticism on clinical usability of relevant outcome measures has hampered its use. ML is normally used to analyse treadmill walking, which is significantly different from the more physiological overground walking. This study aims to provide end-users with instructions on using a single-camera markerless system to obtain reliable motion data from overground walking, while clinicians will be instructed on the reliability of obtained quantities. METHODS: The study compares kinematics obtained from ML systems to those concurrently obtained from marker-based systems, considering different stride counts and subject positioning within the capture volume. RESULTS: The findings suggest that five straight walking trials are sufficient for collecting reliable kinematics with ML systems. Precision on joint kinematics decreased at the boundary of the capture volume. Excellent correlation was found between ML and MB systems for hip and knee angles (0.92

Asunto(s)
Análisis de la Marcha , Marcha , Humanos , Reproducibilidad de los Resultados , Marcha/fisiología , Caminata/fisiología , Articulación de la Rodilla/fisiología , Fenómenos Biomecánicos
4.
Eur J Appl Physiol ; 124(3): 861-872, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37775591

RESUMEN

PURPOSE: When exercising above the lactic threshold (LT), the slow component of oxygen uptake ([Formula: see text]) appears, mainly ascribed to the progressive recruitment of Type II fibers. However, also the progressive decay of the economy of contraction may contribute to it. We investigated oxygen uptake ([Formula: see text]) during isometric contractions clamping torque (T) or muscular activation to quantify the contributions of the two mechanisms. METHODS: We assessed for 7 min T of the leg extensors, net oxygen uptake ([Formula: see text]) and root mean square (RMS) from vastus lateralis (VL) in 11 volunteers (21 ± 2 yy; 1.73 ± 0.11 m; 67 ± 14 kg) during cyclic isometric contractions (contraction/relaxation 5 s/5 s): (i) at 65% of maximal voluntary contraction (MVC) (FB-Torque) and; (ii) keeping the level of RMS equal to that at 65% of MVC (FB-EMG). RESULTS: [Formula: see text] after the third minute in FB-Torque increased with time ([Formula: see text] = 94 × t + 564; R2 = 0.99; P = 0.001), but not during FB-EMG. [Formula: see text]/T increased only during FB-Torque ([Formula: see text]/T = 1.10 × t + 0.57; R2 = 0.99; P = 0.001). RMS was larger in FB-Torque than in FB-EMG and significantly increased in the first three minutes of exercise to stabilize till the end of the trial, indicating that the pool of recruited MUs remained constant despite [Formula: see text]. CONCLUSION: The analysis of the RMS, [Formula: see text] and T during FB-Torque suggests that the intrinsic mechanism attributable to the decay of contraction efficiency was responsible for an increase of [Formula: see text] equal to 18% of the total [Formula: see text].


Asunto(s)
Contracción Isométrica , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología , Músculo Cuádriceps/fisiología , Ejercicio Físico/fisiología , Torque , Oxígeno , Electromiografía
5.
J Appl Physiol (1985) ; 135(5): 1023-1035, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37732378

RESUMEN

We applied the recently introduced concept of intramuscle synergies in spaces of motor units (MUs) to quantify indexes of such synergies in the tibialis anterior during ankle dorsiflexion force production tasks and their changes with fatigue. We hypothesized that MUs would be organized into robust groups (MU modes), which would covary across trials to stabilize force magnitude, and the indexes of such synergies would drop under fatigue. Healthy, young subjects (n = 15; 8 females) produced cyclical, isometric dorsiflexion forces while surface electromyography was used to identify action potentials of individual MUs. Principal component analysis was used to define MU modes. The framework of the uncontrolled manifold (UCM) was used to analyze intercycle variance and compute the synergy index, ΔVZ. Cyclical force production tasks were repeated after a nonfatiguing exercise (control) and a fatiguing exercise. Across subjects, fatigue led, on average, to a 43% drop in maximal force and fewer identified MUs per subject (29.6 ± 2.1 vs. 32.4 ± 2.1). The first two MU modes accounted for 81.2 ± 0.08% of variance across conditions. Force-stabilizing synergies were present across all conditions and were diminished after fatiguing exercise (1.49 ± 0.40) but not control exercise (1.76 ± 0.75). Decreased stability after fatigue was caused by an increase in the amount of variance orthogonal to the UCM. These findings contrast with earlier studies of multieffector synergies demonstrating increased synergy index under fatigue. We interpret the results as reflections of a drop in the gain of spinal reflex loops under fatigue. The findings corroborate an earlier hypothesis on the spinal nature of intramuscle synergies.NEW & NOTEWORTHY Across multielement force production tasks, fatigue of an element leads to increased indexes of force stability (synergy indexes). Here, however, we show that groups of motor units in the tibialis anterior show decreased indexes of force-stabilizing synergies after fatiguing exercise. These findings align intramuscle synergies with spinal mechanisms, in contrast to the supraspinal control of multimuscle synergies.

6.
Exp Brain Res ; 241(5): 1367-1379, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37017728

RESUMEN

The concept of synergies has been used to address the grouping of motor elements contributing to a task with the covariation of these elements reflecting task stability. This concept has recently been extended to groups of motor units with parallel scaling of the firing frequencies with possible contributions of intermittent recruitment (MU-modes) in compartmentalized flexor and extensor muscles of the forearm stabilizing force magnitude in finger pressing tasks. Here, we directly test for the presence and behavior of MU-modes in the tibialis anterior, a non-compartmentalized muscle. Ten participants performed an isometric cyclical dorsiflexion force production task at 1 Hz between 20 and 40% of maximal voluntary contraction and electromyographic (EMG) data were collected from two high-density wireless sensors placed on the skin over the right tibialis anterior. EMG data were decomposed into individual motor unit frequencies and resolved into sets of MU-modes. Inter-cycle analysis of MU-mode magnitudes within the framework of the uncontrolled manifold (UCM) hypothesis was used to quantify force-stabilizing synergies. Two or three MU-modes were identified in all participants and trials accounting, on average, for 69% of variance and were robust to cross-validation measurements. Strong dorsiflexion force-stabilizing synergies in the space of MU-modes were present in all participants and for both electrode locations as reflected in variance within the UCM (median 954, IQR 511-1924) exceeding variance orthogonal to the UCM (median 5.82, IQR 2.9-17.4) by two orders of magnitude. In contrast, MU-mode-stabilizing synergies in the space of motor unit frequencies were not present. This study offers strong evidence for the existence of synergic control mechanisms at the level of motor units independent of muscle compartmentalization, likely organized within spinal cord circuitry.


Asunto(s)
Dedos , Músculo Esquelético , Humanos , Músculo Esquelético/fisiología , Dedos/fisiología , Contracción Muscular/fisiología , Electromiografía
7.
Phys Occup Ther Pediatr ; 43(3): 351-366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36446743

RESUMEN

AIMS: The objective of this case series was to examine the feasibility of vibrotactile EMG-based biofeedback (BF) as a home-based intervention tool to enhance sensory information during everyday motor activities and to explore its effectiveness to induce changes in active ankle range of motion during gait in children with spastic cerebral palsy (CP). METHODS: Ten children ages 6 to 13 years with spastic CP were recruited. Participants wore two EMG-based vibro-tactile BF devices for at least 4 hours per day for 1-month on the ankle and knee joints muscles. The device computed the amplitude of the EMG signal of the target muscle and actuated a silent vibration motor proportional to the magnitude of the EMG. RESULTS: Our results demonstrated the feasibility of the augmented sensory information of muscle activity to induce changes of the active ankle range of motion during gait for 6 children with an increase ranging from 8.9 to 51.6% compared to a one-month period without treatment. CONCLUSIONS: Preliminary findings of this case series demonstrate the feasibility of vibrotactile EMG-based BF and suggest potential effectiveness to increase active ankle range of motion, therefore serving as a promising therapeutic tool to improve gait in children with spastic CP.


Asunto(s)
Tobillo , Parálisis Cerebral , Humanos , Niño , Adolescente , Espasticidad Muscular , Parálisis Cerebral/terapia , Electromiografía/métodos , Marcha/fisiología , Biorretroalimentación Psicológica/métodos , Rango del Movimiento Articular/fisiología , Músculo Esquelético
8.
Neuroscience ; 500: 79-94, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35952997

RESUMEN

In this study, we address the question: Can the central nervous system stabilize vertical posture in the abundant space of neural commands? We assume that the control of vertical posture is associated with setting spatial referent coordinates (RC) for the involved muscle groups, which translates into two basic commands, reciprocal and co-activation. We explored whether the two commands co-varied across trials to stabilize the initial postural state. Young, healthy participants stood quietly against an external horizontal load and were exposed to smooth unloading episodes. Linear regression between horizontal force and center of mass coordinate during the unloading phase was computed to define the intercept (RC) and slope (apparent stiffness, k). Hyperbolic regression between the intercept and slope across unloading episodes and randomization analysis both demonstrated high indexes of co-variation stabilizing horizontal force in the initial state. Higher co-variation indexes were associated with lower average k values across the participants suggesting destabilizing effects of muscle coactivation. Analysis of deviations in the {RC; k} space keeping the posture unchanged (motor equivalent) between two states separated by a voluntary quick body sway showed significantly larger motor equivalent deviations compared to non-motor equivalent ones. This is the first study demonstrating posture-stabilizing synergies in the space of neural control variables using various computational methods. It promises direct applications to studies of postural disorders and rehabilitation.


Asunto(s)
Músculo Esquelético , Postura , Electromiografía , Humanos , Modelos Lineales , Movimiento/fisiología , Músculo Esquelético/fisiología , Equilibrio Postural/fisiología , Postura/fisiología
10.
Eur J Appl Physiol ; 122(3): 651-661, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35034194

RESUMEN

PURPOSE: The aim of this study was to evaluate the short- and long-term effects of the Fasting-Mimicking-Diet (FMD) intervention on neuromuscular parameters of force production in healthy young men. METHODS: Twenty-four physically active men completed the study. Participants were randomly assigned to Fasting-Mimicking (FMD) or Normal Diet (ND) and asked to follow three cycles of dietary intervention. Neuromuscular parameters of force production during maximal voluntary isometric contractions (MVCs) with the leg extensors muscles and anthropometrics were measured at baseline (T0), at the end of the first cycle (T1), and 7-10 days after the 3rd cycle of the nutritional intervention (T2). The study was registered on Clinicaltrials.gov (No. NCT04476615). RESULTS: There was a significant decrease in body mass at T1 for FMD (- 2.6 kg, ∆ from baseline, on average; p < 0.05) but not in ND (- 0.1 kg;). Neuromuscular parameters of force production, muscle volume, and MVC torque did not change or differ between groups across visits. Results were similar even when parameters were normalized by muscle volume. CONCLUSION: The consumption of FMD in a group of young healthy male subjects showed to be feasible, and it did not affect neuromuscular parameters of force production. The results suggest that FMD could be safely adopted by strength athletes without detrimental effects on force and muscle volume. Further research in clinical population at risk of muscle mass loss, such as elderly and obese subjects with sarcopenia, is warranted.


Asunto(s)
Dieta , Ayuno , Pierna/fisiología , Músculo Esquelético/fisiología , Adolescente , Adulto , Índice de Masa Corporal , Electromiografía , Humanos , Contracción Isométrica/fisiología , Masculino , Torque
11.
Gait Posture ; 90: 388-407, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34564011

RESUMEN

BACKGROUND: Individuals with cerebral palsy (CP) report physical fatigue as a main cause of limitation, deterioration and eventually cessation of their walking ability. A consequence of higher level of fatigue in individuals with CP leads to a less efficient and long-distance walking ability. RESEARCH QUESTION: This systematic review investigates the difference in 1) walking energy expenditure between individuals with CP and age-matched typically developing (TD) individuals; and 2) energetics of walking across Gross Motor Function Classification System (GMFCS) levels and age. METHODS: Five electronic databases (PubMed, Web of Science, CINAHL, ScienceDirect and Scopus) were searched using search terms related to CP and energetics of walking. RESULTS: Forty-one studies met inclusion criteria. Thirty-one studies compared energy expenditure between CP and age-matched controls. Twelve studies correlated energy expenditure and oxygen cost across GMFCS levels. Three studies investigated the walking efficiency across different ages or over a time period. A significant increase of energy expenditure and oxygen cost was found in individuals with CP compared to TD age-matched individuals, with a strong relationship across GMFCS levels. SIGNIFICANCE: Despite significant differences between individuals with CP compared to TD peers, variability in methods and testing protocols may play a confounding role. Analysis suggests oxygen cost being the preferred/unbiased physiological parameter to assess walking efficacy in CP. To date, there is a knowledge gap on age-related changes of walking efficiency across GMFCS levels and wider span of age ranges. Further systematic research looking at longitudinal age-related changes of energetics of walking in this population is warranted.


Asunto(s)
Parálisis Cerebral , Metabolismo Energético , Fatiga , Humanos , Caminata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA