Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1966, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438345

RESUMEN

The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed the unique marker genes of many neuronal subtypes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard ( http://harvard.heavy.ai:6273/ ) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.


Asunto(s)
Ascomicetos , Núcleos Parabraquiales , Tegmento Pontino , Humanos , Animales , Ratones , Hibridación Fluorescente in Situ , Tronco Encefálico , Locus Coeruleus
2.
Nat Neurosci ; 26(11): 1929-1941, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37919612

RESUMEN

In addition to its motor functions, the cerebellum is involved in emotional regulation, anxiety and affect. We found that suppressing the firing of cerebellar Purkinje cells (PCs) rapidly excites forebrain areas that contribute to such functions (including the amygdala, basal forebrain and septum), but that the classic cerebellar outputs, the deep cerebellar nuclei, do not directly project there. We show that PCs directly inhibit parabrachial nuclei (PBN) neurons that project to numerous forebrain regions. Suppressing the PC-PBN pathway influences many regions in the forebrain and is aversive. Molecular profiling shows that PCs directly inhibit numerous types of PBN neurons that control diverse behaviors that are not involved in motor control. Therefore, the PC-PBN pathway allows the cerebellum to directly regulate activity in the forebrain, and may be an important substrate for cerebellar disorders arising from damage to the posterior vermis.


Asunto(s)
Núcleos Parabraquiales , Células de Purkinje , Células de Purkinje/fisiología , Cerebelo , Prosencéfalo/fisiología , Neuronas/metabolismo
3.
bioRxiv ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38014113

RESUMEN

The "dorsal pons", or "dorsal pontine tegmentum" (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed many neuronal subtypes' unique marker genes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study's translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard (http://harvard.heavy.ai:6273/) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data.

4.
PLoS Genet ; 19(2): e1010556, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802379

RESUMEN

X-chromosome inactivation (XCI) silences one X in female cells to balance sex-differences in X-dosage. A subset of X-linked genes escape XCI, but the extent to which this phenomenon occurs and how it varies across tissues and in a population is as yet unclear. To characterize incidence and variability of escape across individuals and tissues, we conducted a transcriptomic study of escape in adipose, skin, lymphoblastoid cell lines and immune cells in 248 healthy individuals exhibiting skewed XCI. We quantify XCI escape from a linear model of genes' allelic fold-change and XIST-based degree of XCI skewing. We identify 62 genes, including 19 lncRNAs, with previously unknown patterns of escape. We find a range of tissue-specificity, with 11% of genes escaping XCI constitutively across tissues and 23% demonstrating tissue-restricted escape, including cell type-specific escape across immune cells of the same individual. We also detect substantial inter-individual variability in escape. Monozygotic twins share more similar escape than dizygotic twins, indicating that genetic factors may underlie inter-individual differences in escape. However, discordant escape also occurs within monozygotic co-twins, suggesting environmental factors also influence escape. Altogether, these data indicate that XCI escape is an under-appreciated source of transcriptional differences, and an intricate phenotype impacting variable trait expressivity in females.


Asunto(s)
Cromosomas Humanos X , Inactivación del Cromosoma X , Humanos , Femenino , Inactivación del Cromosoma X/genética , Cromosomas Humanos X/genética , Genes Ligados a X/genética , Gemelos Monocigóticos/genética , Fenotipo
5.
Nat Commun ; 13(1): 4163, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851580

RESUMEN

Humans and animals lacking orexin neurons exhibit daytime sleepiness, sleep attacks, and state instability. While the circuit basis by which orexin neurons contribute to consolidated wakefulness remains unclear, existing models posit that orexin neurons provide their wake-stabilizing influence by exerting excitatory tone on other brain arousal nodes. Here we show using in vivo optogenetics, in vitro optogenetic-based circuit mapping, and single-cell transcriptomics that orexin neurons also contribute to arousal maintenance through indirect inhibition of sleep-promoting neurons of the ventrolateral preoptic nucleus. Activation of this subcortical circuit rapidly drives wakefulness from sleep by differentially modulating the activity of ventrolateral preoptic neurons. We further identify and characterize a feedforward circuit through which orexin (and co-released glutamate) acts to indirectly target and inhibit sleep-promoting ventrolateral preoptic neurons to produce arousal. This revealed circuitry provides an alternate framework for understanding how orexin neurons contribute to the maintenance of consolidated wakefulness and stabilize behavioral state.


Asunto(s)
Nivel de Alerta , Sueño , Animales , Nivel de Alerta/fisiología , Humanos , Neuronas/fisiología , Orexinas , Sueño/fisiología , Vigilia/fisiología
6.
Nat Commun ; 10(1): 5339, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767861

RESUMEN

Female somatic X-chromosome inactivation (XCI) balances the X-linked transcriptional dosages between the sexes. Skewed XCI toward one parental X has been observed in several complex human traits, but the extent to which genetics and environment influence skewed XCI is largely unexplored. To address this, we quantify XCI-skew in multiple tissues and immune cell types in a twin cohort. Within an individual, XCI-skew differs between blood, fat and skin tissue, but is shared across immune cell types. XCI skew increases with age in blood, but not other tissues, and is associated with smoking. XCI-skew is increased in twins with Rheumatoid Arthritis compared to unaffected identical co-twins. XCI-skew is heritable in blood of females >55 years old (h2 = 0.34), but not in younger individuals or other tissues. This results in a Gene x Age interaction that shifts the functional dosage of all X-linked heterozygous loci in a tissue-restricted manner.


Asunto(s)
Artritis Reumatoide/genética , Cromosomas Humanos X/genética , Genes Ligados a X/genética , Predisposición Genética a la Enfermedad/genética , Gemelos/genética , Inactivación del Cromosoma X , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Persona de Mediana Edad , Especificidad de Órganos/genética
7.
Cereb Cortex ; 27(12): 5739-5754, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29028941

RESUMEN

Autism Spectrum Disorder (ASD) is a complex neuropsychiatric syndrome whose etiology includes genetic and environmental components. Since epigenetic marks are sensitive to environmental insult, they may be involved in the development of ASD. Initial brain studies have suggested a dysregulation of epigenetic marks in ASD. However, due to cellular heterogeneity in the brain, these studies have not determined if there is a true change in the neuronal epigenetic signature. Here, we report a genome-wide methylation study on fluorescence-activated cell sorting-sorted neuronal nuclei from the frontal cortex of 16 male ASD and 15 male control subjects. Using the 450 K BeadArray, we identified 58 differentially methylated regions (DMRs) that included loci associated to GABAergic system genes, particularly ABAT and GABBR1, and brain-specific MicroRNAs. Selected DMRs were validated by targeted Next Generation Bisulfite Sequencing. Weighted gene correlation network analysis detected 3 co-methylation modules which are significantly correlated to ASD that were enriched for genomic regions underlying neuronal, GABAergic, and immune system genes. Finally, we determined an overlap of the 58 ASD-related DMRs with neurodevelopment associated DMRs. This investigation identifies alterations in the DNA methylation pattern in ASD cortical neurons, providing further evidence that epigenetic alterations in disorder-relevant tissues may be involved in the biology of ASD.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Núcleo Celular/metabolismo , Metilación de ADN , Lóbulo Frontal/metabolismo , Neuronas/metabolismo , Trastorno del Espectro Autista/genética , Epigénesis Genética , Citometría de Flujo , Estudio de Asociación del Genoma Completo , Humanos , Masculino
8.
Cell Rep ; 17(9): 2418-2430, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27880914

RESUMEN

CCCTC-binding factor (CTCF) is an organizer of higher-order chromatin structure and regulates gene expression. Genetic studies have implicated mutations in CTCF in intellectual disabilities. However, the role of CTCF-mediated chromatin structure in learning and memory is unclear. We show that depletion of CTCF in postmitotic neurons, or depletion in the hippocampus of adult mice through viral-mediated knockout, induces deficits in learning and memory. These deficits in learning and memory at the beginning of adulthood are correlated with impaired long-term potentiation and reduced spine density, with no changes in basal synaptic transmission and dendritic morphogenesis and arborization. Cognitive disabilities are associated with downregulation of cadherin and learning-related genes. In addition, CTCF knockdown attenuates fear-conditioning-induced hippocampal gene expression of key learning genes and loss of long-range interactions at the BDNF and Arc loci. This study thus suggests that CTCF-dependent gene expression regulation and genomic organization are regulators of learning and memory.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Factor de Unión a CCCTC/metabolismo , Proteínas del Citoesqueleto/genética , Regulación de la Expresión Génica , Genoma , Memoria/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Adenoviridae/metabolismo , Animales , Conducta Animal , Sitios de Unión , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cadherinas/metabolismo , Cromatina/metabolismo , Condicionamiento Psicológico , Proteínas del Citoesqueleto/metabolismo , Miedo , Potenciación a Largo Plazo , Trastornos de la Memoria/genética , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Factores de Tiempo
9.
Front Neurosci ; 10: 329, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27462204

RESUMEN

Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as a process susceptible to environmental influences and potentially causative of autism spectrum disorders (ASD). In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism.

10.
Mol Autism ; 6: 46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26273428

RESUMEN

BACKGROUND: MicroRNAs are small RNA molecules that regulate the translation of protein from gene transcripts and are a powerful mechanism to regulate gene networks. Next-generation sequencing technologies have produced important insights into gene transcription changes that occur in the brain of individuals diagnosed with autism spectrum disorder (asd). However, these technologies have not yet been employed to uncover changes in microRNAs in the brain of individuals diagnosed with asd. METHODS: Small RNA next-generation sequencing was performed on RNA extracted from 12 human autism brain samples and 12 controls. Real-time PCR was used to validate a sample of the differentially expressed microRNAs, and bioinformatic analysis determined common pathways of gene targets. MicroRNA expression data was correlated to genome-wide DNA methylation data to determine if there is epigenetic regulation of dysregulated microRNAs in the autism brain. Luciferase assays, real-time PCR, and Western blot analysis were used to determine how dysregulated microRNAs may regulate the expression and translation of an autism-related gene transcript. RESULTS: We determined that miR-142-5p, miR-142-3p, miR-451a, miR-144-3p, and miR-21-5p are overexpressed in the asd brain. Furthermore, the promoter region of the miR-142 gene is hypomethylated in the same brain samples, suggesting that epigenetics plays a role in dysregulation of microRNAs in the brain. Bioinformatic analysis revealed that these microRNAs target genes that are involved in synaptic function. Further bioinformatic analysis, coupled with in vitro luciferase assays, determined that miR-451a and miR-21-5p can target the oxytocin receptor (OXTR) gene. OXTR gene expression is increased in these same brain samples, and there is a positive correlation between miR-21-5p and OXTR expression. However, miR-21-5p expression negatively correlates to production of OXTR protein from the OXTR transcript. Therefore, we suggest that miR-21-5p may attenuate OXTR expression in the human autism brain. CONCLUSIONS: Our data suggests that dysregulation of microRNAs may play a biological role in the brain of individuals of autism. In addition, we suggest an interaction between epigenetic mechanisms and microRNA dysregulation in the brain. Overall, this data adds an important link in our understanding of the molecular events that are dysregulated in the brain of individuals diagnosed with autism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...