RESUMEN
We typed 600 methicillin-resistant Staphylococcus aureus (MRSA) isolates collected in 51 hospitals in the Rio de Janeiro, Brazil, metropolitan area during 2014-2017. We found that multiple new clonal complex (CC) 5 sequence types had replaced previously dominant MRSA lineages in hospitals. Whole-genome analysis of 208 isolates revealed an emerging sublineage of multidrug-resistant MRSA, sequence type 105, staphylococcal cassette chromosome mec II, spa t002, which we designated the Rio de Janeiro (RdJ) clone. Using molecular clock analysis, we hypothesized that this lineage began to expand in the Rio de Janeiro metropolitan area in 2009. Multivariate analysis supported an association between bloodstream infections and the CC5 lineage that includes the RdJ clone. Compared with other closely related isolates, representative isolates of the RdJ clone more effectively evaded immune function related to monocytic cells, as evidenced by decreased phagocytosis rate and increased numbers of viable unphagocytosed (free) bacteria after in vitro exposure to monocytes.
Asunto(s)
Bacteriemia , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Bacteriemia/epidemiología , Brasil/epidemiología , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Monocitos , Infecciones Estafilocócicas/epidemiologíaRESUMEN
Little is known about the population structure of vancomycin-resistant Enterococcus faecium (VREfm) in Latin America (LATAM). Here, we provide a complete genomic characterization of 55 representative Latin American VREfm recovered from 1998-2015 in 5 countries. The LATAM VREfm population is structured into two main clinical clades without geographical clustering. Using the LATAM genomes, we reconstructed the global population of VREfm by including 285 genomes from 36 countries spanning from 1946 to 2017. In contrast to previous studies, our results show an early branching of animal related isolates and a further split of clinical isolates into two sub-clades within clade A. The overall phylogenomic structure of clade A was highly dependent on recombination (54% of the genome) and the split between clades A and B was estimated to have occurred more than 2,765 years ago. Furthermore, our molecular clock calculations suggest the branching of animal isolates and clinical clades occurred ~502 years ago whereas the split within the clinical clade occurred ~302 years ago (previous studies showed a more recent split between clinical an animal branches around ~74 years ago). By including isolates from Latin America, we present novel insights into the population structure of VREfm and revisit the evolution of these pathogens.
Asunto(s)
Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/genética , Infecciones por Bacterias Grampositivas/epidemiología , Enterococos Resistentes a la Vancomicina/genética , Vancomicina/farmacología , Antibacterianos , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Brotes de Enfermedades , Genómica/métodos , Genotipo , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Epidemiología Molecular/métodos , Filogenia , Enterococos Resistentes a la Vancomicina/efectos de los fármacosRESUMEN
The global spread of specific clones of methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem, and understanding the dynamics of geographical spread requires worldwide surveillance. Over the past 20 years, the ST239 lineage of MRSA has been recognized as an emerging clone across the globe, with detailed studies focusing on isolates from Europe and Asia. Less is known about this lineage in South America, and, particularly, Brazil where it was the predominant lineage of MRSA in the early 1990s to 2000s. To gain a better understanding about the introduction and spread of ST239 MRSA in Brazil we undertook a comparative phylogenomic analysis of ST239 genomes, adding seven completed, closed Brazilian genomes. Brazilian ST239 isolates grouped in a subtree with those from South American, and Western, romance-language-speaking, European countries, here designated the South American clade. After an initial worldwide radiation in the 1960s and 1970s, we estimate that ST239 began to spread in South America and Brazil in approximately 1988. This clone demonstrates specific genomic changes that are suggestive of local divergence and adaptational change including agrC single-nucleotide polymorphisms variants, and a distinct pattern of virulence-associated genes (mainly the presence of the chp and the absence of sea and sasX). A survey of a geographically and chronologically diverse set of 100 Brazilian ST239 isolates identified this virulence genotype as the predominant pattern in Brazil, and uncovered an unexpectedly high prevalence of agr-dysfunction (30%). ST239 isolates from Brazil also appear to have undergone transposon (IS256) insertions in or near global regulatory genes (agr and mgr) that likely led to rapid reprogramming of bacterial traits. In general, the overall pattern observed in phylogenomic analyses of ST239 is of a rapid initial global radiation, with subsequent local spread and adaptation in multiple different geographic locations. Most ST239 isolates harbor the ardA gene, which we show here to have in vivo anti-restriction activity. We hypothesize that this gene may have improved the ability of this lineage to acquire multiple resistance genes and distinct virulence-associated genes in each local context. The allopatric divergence pattern of ST239 also may suggest strong selective pressures for specific traits in different geographical locations.
RESUMEN
Background: Carbapenem resistance is a critical healthcare challenge worldwide. Particularly concerning is the widespread dissemination of Klebsiella pneumoniae carbapenemase (KPC). Klebsiella pneumoniae harboring blaKPC (KPC-Kpn) is endemic in many areas including the United States, where the epidemic was primarily mediated by the clonal dissemination of Kpn ST258. We postulated that the spread of blaKPC in other regions occurs by different and more complex mechanisms. To test this, we investigated the evolution and dynamics of spread of KPC-Kpn in Colombia, where KPC became rapidly endemic after emerging in 2005. Methods: We sequenced the genomes of 133 clinical isolates recovered from 24 tertiary care hospitals located in 10 cities throughout Colombia, between 2002 (before the emergence of KPC-Kpn) and 2014. Phylogenetic reconstructions and evolutionary mapping were performed to determine temporal and genetic associations between the isolates. Results: Our results indicate that the start of the epidemic was driven by horizontal dissemination of mobile genetic elements carrying blaKPC-2, followed by the introduction and subsequent spread of clonal group 258 (CG258) isolates containing blaKPC-3. Conclusions: The combination of 2 evolutionary mechanisms of KPC-Kpn within a challenged health system of a developing country created the "perfect storm" for sustained endemicity of these multidrug-resistant organisms in Colombia.
Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Epidemias , Evolución Molecular , Infecciones por Klebsiella/epidemiología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/aislamiento & purificación , Ciudades/epidemiología , Colombia/epidemiología , ADN Bacteriano/química , ADN Bacteriano/genética , Transmisión de Enfermedad Infecciosa , Transferencia de Gen Horizontal , Humanos , Secuencias Repetitivas Esparcidas , Klebsiella pneumoniae/clasificación , Klebsiella pneumoniae/aislamiento & purificación , Epidemiología Molecular , Filogenia , Análisis de Secuencia de ADN , Centros de Atención Terciaria , Secuenciación Completa del GenomaRESUMEN
We report characterization of a methicillin-susceptible, vancomycin-resistant bloodstream isolate of Staphylococcus aureus recovered from a patient in Brazil. Emergence of vancomycin resistance in methicillin-susceptible S. aureus would indicate that this resistance trait might be poised to disseminate more rapidly among S. aureus and represents a major public health threat.
Asunto(s)
Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana/estadística & datos numéricos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Vancomicina/farmacología , Bacteriemia/microbiología , Brasil/epidemiología , Humanos , Meticilina/farmacología , Meticilina/uso terapéutico , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/aislamiento & purificación , Vancomicina/uso terapéutico , Resistencia a la Vancomicina/inmunologíaRESUMEN
BACKGROUND: The community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) epidemic in the United States is attributed to the spread of the USA300 clone. An epidemic of CA-MRSA closely related to USA300 has occurred in northern South America (USA300 Latin-American variant, USA300-LV). Using phylogenomic analysis, we aimed to understand the relationships between these 2 epidemics. METHODS: We sequenced the genomes of 51 MRSA clinical isolates collected between 1999 and 2012 from the United States, Colombia, Venezuela, and Ecuador. Phylogenetic analysis was used to infer the relationships and times since the divergence of the major clades. RESULTS: Phylogenetic analyses revealed 2 dominant clades that segregated by geographical region, had a putative common ancestor in 1975, and originated in 1989, in North America, and in 1985, in South America. Emergence of these parallel epidemics coincides with the independent acquisition of the arginine catabolic mobile element (ACME) in North American isolates and a novel copper and mercury resistance (COMER) mobile element in South American isolates. CONCLUSIONS: Our results reveal the existence of 2 parallel USA300 epidemics that shared a recent common ancestor. The simultaneous rapid dissemination of these 2 epidemic clades suggests the presence of shared, potentially convergent adaptations that enhance fitness and ability to spread.
Asunto(s)
Infecciones Comunitarias Adquiridas/epidemiología , Infecciones Comunitarias Adquiridas/microbiología , Epidemias , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología , Monitoreo Epidemiológico , Genoma Bacteriano , Genotipo , Humanos , Epidemiología Molecular , Tipificación Molecular , América del Norte/epidemiología , Filogeografía , Análisis de Secuencia de ADN , América del Sur/epidemiologíaRESUMEN
We report the case of a patient from Brazil with a bloodstream infection caused by a strain of methicillin-resistant Staphylococcus aureus (MRSA) that was susceptible to vancomycin (designated BR-VSSA) but that acquired the vanA gene cluster during antibiotic therapy and became resistant to vancomycin (designated BR-VRSA). Both strains belong to the sequence type (ST) 8 community-associated genetic lineage that carries the staphylococcal chromosomal cassette mec (SCCmec) type IVa and the S. aureus protein A gene (spa) type t292 and are phylogenetically related to MRSA lineage USA300. A conjugative plasmid of 55,706 bp (pBRZ01) carrying the vanA cluster was identified and readily transferred to other staphylococci. The pBRZ01 plasmid harbors DNA sequences that are typical of the plasmid-associated replication genes rep24 or rep21 described in community-associated MRSA strains from Australia (pWBG745). The presence and dissemination of community-associated MRSA containing vanA could become a serious public health concern.