Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38845597

RESUMEN

BACKGROUND: Increasing interest surrounds the utility of blood-based biomarkers for diagnosing sarcopenia. C-terminal agrin fragment (CAF), a marker of neuromuscular junction stability, is amongst the most promising candidates; however, a dearth of reference data impedes the incorporation of its use in public health settings. This study aimed to establish reference values for plasma CAF concentrations across adulthood in a large, well-characterized cohort of healthy adults; and comprehensively examine the association between plasma CAF levels and skeletal muscle health. METHODS: One thousand people aged between 18 and 87 years took part in this study (mean age = 50.4 years; 51% females). Body composition and muscle strength were examined using DXA and hand dynamometry. Plasma CAF concentrations were measured, in duplicate, using commercially available ELISA kits. Sarcopenia and individual sarcopenia signatures [low skeletal muscle index (SMI) only/low grip strength only] were classified using the EWGSOP2 algorithm. RESULTS: Detailed reference CAF values, according to sex and age, are presented. A significant but modest age-related increase in plasma CAF concentration was observed (P = 0.018). Across adulthood, CAF concentrations were negatively associated with grip strength and SMI (both P < 0.001). In people ≥50 years old, CAF concentrations were 22.6% higher in those with sarcopenia (P < 0.001), 11.3% higher in those with low SMI (P = 0.006) and 9.6% higher in those with low grip strength (P = 0.0034), compared with controls. People in the highest CAF concentration quartile, had 3.25 greater odds for sarcopenia (95% CI = 1.41-7.49, P = 0.005), 2.76 greater odds for low SMI (95% CI = 1.24-5.22, P = 0.012), and 2.56 greater odds for low grip strength (95% CI = 1.07-5.57, P = 0.037), compared with those in the lowest quartile. People with a CAF Z-score ≥2 had 9.52 greater odds for sarcopenia (95% CI = 3.01-30.05, P < 0.001) compared with a Z-score <1. Plasma CAF concentration had an acceptable level of diagnostic accuracy for sarcopenia (AUC = 0.772, 95% CI = 0.733-0.807, P < 0.001). CONCLUSIONS: The reference values presented herein may guide the clinical interpretation of circulating CAF and help identify people at risk of poor skeletal muscle outcomes for inclusion in therapeutic interventions. Our findings add clarity to existing data, demonstrating a robust relationship between circulating CAF and skeletal muscle integrity in the largest adult cohort to date, and support the use of CAF as an accessible, cost-effective screening tool for sarcopenia. However, further research into the prognostic utility of plasma CAF, and the establishment of normative data from other populations, are urgently needed if routine CAF screening is to be embedded into public healthcare settings.

2.
NPJ Microgravity ; 10(1): 60, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839773

RESUMEN

Skeletal muscle undergoes atrophy and loss of force during long space missions, when astronauts are persistently exposed to altered gravity and increased ionizing radiation. We previously carried out mass spectrometry-based proteomics from skeletal muscle biopsies of two astronauts, taken before and after a mission on the International Space Station. The experiments were part of an effort to find similarities between spaceflight and bed rest, a ground-based model of unloading, focused on proteins located at the costameres. We here extend the data analysis of the astronaut dataset and show compartment-resolved changes in the mitochondrial proteome, remodeling of the extracellular matrix and of the antioxidant response. The astronauts differed in their level of onboard physical exercise, which correlated with their respective preservation of muscle mass and force at landing in previous analyses. We show that the mitochondrial proteome downregulation during spaceflight, particularly the inner membrane and matrix, was dramatic for both astronauts. The expression of autophagy regulators and reactive oxygen species scavengers, however, showed partially opposite expression trends in the two subjects, possibly correlating with their level of onboard exercise. As mitochondria are primarily affected in many different tissues during spaceflight, we hypothesize that reactive oxygen species (ROS) rather than mechanical unloading per se could be the primary cause of skeletal muscle mitochondrial damage in space. Onboard physical exercise might have a strong direct effect on the prevention of muscle atrophy through mechanotransduction and a subsidiary effect on mitochondrial quality control, possibly through upregulation of autophagy and anti-oxidant responses.

3.
Med Sci Sports Exerc ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689447

RESUMEN

PURPOSE: Prior evidence has shown that neural factors contribute to the loss of muscle force after skeletal-muscle disuse. However, little is known about the specific neural mechanisms altered by disuse. Persistent inward current (PIC) is an intrinsic property of motoneurons responsible for prolonging and amplifying the synaptic input, proportionally to the level of neuromodulation, thus influencing motoneuron discharge rate and force production. Here, we hypothesized that short-term unilateral lower-limb suspension (ULLS) would reduce the neuromodulatory input associated with PICs, contributing to the reduction of force generation capacity. Additionally, we tested whether physical exercise would restore the force generation capacity by re-establishing the initial level of neuromodulatory input. METHODS: In 12 young adults, we assessed maximal voluntary contraction (MVC) pre- and post- 10 days of ULLS and following 21 days of active recovery (AR) based on resistance exercise. PIC was estimated from high-density surface electromyograms of the vastus lateralis muscle as the delta frequency (∆F) of paired motor units calculated during isometric ramped contractions. RESULTS: The values of ∆F were reduced after 10 days of ULLS (-33%, p < 0.001), but were fully re-established after the AR (+29.4%, p < 0.001). The changes in estimated PIC values were correlated (r = 0.63, p = 0.004) with the reduction in MVC after ULLS (-29%, p = 0.002) and its recovery after the AR (+28.5%, p = 0.003). CONCLUSIONS: Our findings suggest that PIC estimates are reduced by muscle disuse and may contribute to the loss of force production and its recovery with exercise. Overall, this is the first study demonstrating that, in addition to peripheral neuromuscular changes, central neuromodulation is a major contributor to the loss of force generation capacity after disuse, and can be recovered after resistance exercise.

4.
J Sport Health Sci ; 13(2): 264-276, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37331508

RESUMEN

PURPOSE: This study aimed to non-invasively test the hypothesis that (a) short-term lower limb unloading would induce changes in the neural control of force production (based on motor units (MUs) properties) in the vastus lateralis muscle and (b) possible changes are reversed by active recovery (AR). METHODS: Ten young males underwent 10 days of unilateral lower limb suspension (ULLS) followed by 21 days of AR. During ULLS, participants walked exclusively on crutches with the dominant leg suspended in a slightly flexed position (15°-20°) and with the contralateral foot raised by an elevated shoe. The AR was based on resistance exercise (leg press and leg extension) and executed at 70% of each participant's 1 repetition maximum, 3 times/week. Maximal voluntary isometric contraction (MVC) of knee extensors and MUs properties of the vastus lateralis muscle were measured at baseline, after ULLS, and after AR. MUs were identified using high-density electromyography during trapezoidal isometric contractions at 10%, 25%, and 50% of the current MVC, and individual MUs were tracked across the 3 data collection points. RESULTS: We identified 1428 unique MUs, and 270 of them (18.9%) were accurately tracked. After ULLS, MVC decreased by 29.77%, MUs absolute recruitment/derecruitment thresholds were reduced at all contraction intensities (with changes between the 2 variables strongly correlated), while discharge rate was reduced at 10% and 25% but not at 50% MVC. Impaired MVC and MUs properties fully recovered to baseline levels after AR. Similar changes were observed in the pool of total as well as tracked MUs. CONCLUSION: Our novel results demonstrate, non-invasively, that 10 days of ULLS affected neural control predominantly by altering the discharge rate of lower-threshold but not of higher-threshold MUs, suggesting a preferential impact of disuse on motoneurons with a lower depolarization threshold. However, after 21 days of AR, the impaired MUs properties were fully restored to baseline levels, highlighting the plasticity of the components involved in neural control.


Asunto(s)
Rodilla , Extremidad Inferior , Masculino , Humanos , Rodilla/fisiología , Electromiografía , Músculo Cuádriceps/fisiología , Neuronas Motoras/fisiología
5.
Sci Rep ; 13(1): 19258, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37935771

RESUMEN

Older individuals experience cardiovascular dysfunction during extended bedridden hospital or care home stays. Bed rest is also used as a model to simulate accelerated vascular deconditioning occurring during spaceflight. This study investigates changes in retinal microcirculation during a ten-day bed rest protocol. Ten healthy young males (22.9 ± 4.7 years; body mass index: 23.6 ± 2.5 kg·m-2) participated in a strictly controlled repeated-measures bed rest study lasting ten days. High-resolution images were obtained using a hand-held fundus camera at baseline, daily during the 10 days of bed rest, and 1 day after re-ambulation. Retinal vessel analysis was performed using a semi-automated software system to obtain metrics for retinal arteriolar and venular diameters, central retinal artery equivalent and central retinal vein equivalent, respectively. Data analysis employed a mixed linear model. At the end of the bed rest period, a significant decrease in retinal venular diameter was observed, indicated by a significantly lower central retinal vein equivalent (from 226.1 µm, CI 8.90, to 211.4 µm, CI 8.28, p = .026), while no significant changes in central retinal artery equivalent were noted. Prolonged bed rest confinement resulted in a significant (up to 6.5%) reduction in retinal venular diameter. These findings suggest that the changes in retinal venular diameter during bedrest may be attributed to plasma volume losses and reflect overall (cardio)-vascular deconditioning.


Asunto(s)
Arteria Retiniana , Vena Retiniana , Masculino , Humanos , Reposo en Cama/efectos adversos , Vasos Retinianos/diagnóstico por imagen , Arteria Retiniana/diagnóstico por imagen , Vena Retiniana/diagnóstico por imagen , Angiografía con Fluoresceína
6.
Aging Clin Exp Res ; 35(11): 2563-2571, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37658983

RESUMEN

BACKGROUND: Although handgrip strength (HGS) asymmetry has clinical screening utility, its relevance to sarcopenia is unknown. This study examined the relationship between HGS asymmetry and sarcopenia signatures, and explored the relevance of circulating neural/neuromuscular markers. METHODS: 9403 individuals aged 18-92 years participated in this study. Maximal HGS and skeletal muscle index (SMI) were determined using hand dynamometry and DXA. Sarcopenia was diagnosed upon the presence of low HGS and low SMI, according to cohort-specific thresholds. Plasma biomarkers were measured by ELISA in a sub-group of 269 participants aged 50-83 years. Asymmetry was determined as the highest recorded HGS divided by the highest recorded HGS of the opposite hand. Individuals with a ratio > 1.10 were classified as having asymmetrical HGS. RESULTS: Subjects with asymmetrical HGS had significantly lower SMI (7.67 kg/m2 vs 7.71 kg/m2, p = 0.004) and lower HGS (37.82 kg vs 38.91 kg, p < 0.001) than those with symmetrical HGS. In those aged ≥ 50 years asymmetrical HGS was associated with 2.67 higher odds for sarcopenia [95% confidence interval: (CI) = 1.557-4.561, p < 0.001], 1.83 higher odds for low HGS only (CI 1.427-2.342, p < 0.001), and 1.79 higher odds for low SMI only (CI 1.257-2.554, p = 0.001). HGS asymmetry demonstrated acceptable diagnostic accuracy for sarcopenia (AUC = 0.727, CI 0.658-0.796, p < 0.001). Plasma neural cell adhesion molecule concentrations were 19.6% higher in individuals with asymmetrical HGS (185.40 ng/mL vs 155.00 ng/mL, p < 0.001) than those with symmetrical HGS. DISCUSSION: Our findings demonstrate the utility of HGS asymmetry as a screening tool that may complement existing strategies seeking to combat sarcopenia. Biomarker analyses suggest that heightened denervation may be an important aetiological factor underpinning HGS asymmetry.


Asunto(s)
Sarcopenia , Humanos , Sarcopenia/diagnóstico , Fuerza de la Mano/fisiología , Músculo Esquelético , Biomarcadores , Composición Corporal , Fuerza Muscular/fisiología
7.
BMC Public Health ; 23(1): 917, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208654

RESUMEN

BACKGROUD: Sarcopenia is a common skeletal muscle syndrome that is common in older adults but can be mitigated by adequate and regular physical activity. The development and severity of sarcopenia is favored by several factors, the most influential of which are a sedentary lifestyle and physical inactivity. The aim of this observational longitudinal cohort study was to evaluate changes in sarcopenia parameters, based on the EWGSOP2 definition in a population of active older adults after eight years. It was hypothesized that selected active older adults would perform better on sarcopenia tests than the average population. METHODS: The 52 active older adults (22 men and 30 women, mean age: 68.4 ± 5.6 years at the time of their first evaluation) participated in the study at two time points eight-years apart. Three sarcopenia parameters were assessed at both time points: Muscle strength (handgrip test), skeletal muscle mass index, and physical performance (gait speed), these parameters were used to diagnose sarcop0enia according to the EWGSOP2 definition. Additional motor tests were also performed at follow-up measurements to assess participants' overall fitness. Participants self-reported physical activity and sedentary behavior using General Physical Activity Questionnaire at baseline and at follow-up measurements. RESULTS: In the first measurements we did not detect signs of sarcopenia in any individual, but after 8 years, we detected signs of sarcopenia in 7 participants. After eight years, we detected decline in ; muscle strength (-10.2%; p < .001), muscle mass index (-5.4%; p < .001), and physical performance measured with gait speed (-28.6%; p < .001). Similarly, self-reported physical activity and sedentary behavior declined, too (-25.0%; p = .030 and - 48.5%; p < .001, respectively). CONCLUSIONS: Despite expected lower scores on tests of sarcopenia parameters due to age-related decline, participants performed better on motor tests than reported in similar studies. Nevertheless, the prevalence of sarcopenia was consistent with most of the published literature. TRIAL REGISTRATION: The clinical trial protocol was registered on ClinicalTrials.gov, identifier: NCT04899531.


Asunto(s)
Sarcopenia , Masculino , Humanos , Femenino , Anciano , Persona de Mediana Edad , Sarcopenia/diagnóstico , Sarcopenia/epidemiología , Estudios Longitudinales , Fuerza de la Mano/fisiología , Fuerza Muscular , Músculo Esquelético , Prevalencia
8.
Acta Physiol (Oxf) ; 238(3): e13986, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37178372

RESUMEN

Physical inactivity represents a heavy burden for modern societies and is spreading worldwide, it is a recognised pandemic and is the fourth cause of global mortality. Not surprisingly, there is an increasing interest in longitudinal studies on the impact of reduced physical activity on different physiological systems. This narrative review focuses on the pathophysiological mechanisms of step reduction (SR), an experimental paradigm that involves a sudden decrease in participants' habitual daily steps to a lower level, mimicking the effects of a sedentary lifestyle. Analogous animal models of reduced physical activity, namely, the "wheel-lock" and the "cage reduction" models, which can provide the foundation for human studies, are also discussed. The empirical evidence obtained thus far shows that even brief periods of reduced physical activity can lead to substantial alterations in skeletal muscle health and metabolic function. In particular, decrements in lean/muscle mass, muscle function, muscle protein synthesis, cardiorespiratory fitness, endothelial function and insulin sensitivity, together with an increased fat mass and inflammation, have been observed. Exercise interventions seem particularly effective for counteracting these pathophysiological alterations induced by periods of reduced physical activity. A direct comparison of SR with other human models of unloading, such as bed rest and lower limb suspension/immobilisation, is presented. In addition, we propose a conceptual framework aiming to unravel the mechanisms of muscle atrophy and insulin resistance in the specific context of reduced ambulatory activity. Finally, methodological considerations, knowledge gaps and future directions for both animal and human models are also discussed in the review.


Asunto(s)
Ejercicio Físico , Resistencia a la Insulina , Animales , Humanos , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo
9.
Biology (Basel) ; 12(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36979123

RESUMEN

Human skeletal muscle atrophy and a disproportionate force loss occur within a few days of unloading in space and on Earth, but the underlying mechanisms are not fully understood. Disruption of neuromuscular junction homeostasis has been proposed as one of the possible causes. Here, we investigated the potential mechanisms involved in this neuromuscular disruption induced by a 10-day unilateral lower limb suspension (ULLS) in humans. Specifically, we investigated hemichannels' upregulation, neuromuscular junction and axonal damage, neurotrophins' receptor downregulation and inflammatory transcriptional signatures. Biomarkers were evaluated at local and systemic levels. At the sarcolemmal level, changes were found to be associated with an increased expression of connexin 43 and pannexin-1. Upregulation of the inflammatory transcripts revealed by deep transcriptomics was found after 10 days of ULLS. The destabilisation of the neuromuscular junction was not accompanied by changes in the secretion of the brain-derived neurotrophic factor and neurotrophin-4, while their receptor, BDNF/NT growth factors receptor (TrkB), decreased. Furthermore, at 5 days of ULLS, there was already a significant upregulation of the serum neurofilament light chain concentration, an established clinical biomarker of axonal injury. At 10 days of ULLS, other biomarkers of early denervation processes appeared. Hence, short periods of muscle unloading induce sarcolemmal hemichannels upregulation, inflammatory transcripts upregulation, neuromuscular junction instability and axonal damage.

10.
Eur J Transl Myol ; 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36786151

RESUMEN

At the end of the 2022 Padua Days of Muscle and Mobility Medicine (Pdm3) the next year's meeting was scheduled from 29 March to 1 April 2023. Despite the worsening evolution of the crisis in Eastern Europe, the program was confirmed in autumn 2022 with Scientific Sessions that will take place over three full days in the Aula Guariento of the Galileian Academy of Arts, Letters and Sciences of Padua (March 29, 2023) and then at the Conference Room of the Hotel Petrarca, Thermae of Euganean Hills (Padua), Italy. Collected during autumn and early winter, many titles and abstracts where submitted (about 100 Oral presentations are listed in the preliminary Program by January 31, 2023) confirming attractiveness of the 2023 Pdm3. The four days will include oral presentations of scientists and clinicians from Austria, Bulgaria, Canada, Denmark, France, Georgia, Germany, Iceland, Ireland, Italy, Mongolia, Norway, Russia, Slovakia, Slovenia, Spain, Switzerland, The Netherlands and USA. Together with the preliminary Program at January 31, 2023, the Collection of Abstracts is e-published in this Issue 33 (1) 2023 of the European Journal of Translational Myology (EJTM). You are invited to join, submitting your Last Minute Abstracts to ugo.carraro@unipd.it by March 15, 2023. Furthermore, with the more generous deadline of May 20, 2023, submit please "Communications" to the European Journal of Translational Myology (SCOPUS Cite Score Tracker 2023: 3.2 by January 5, 2023) and/or to the 2023 Special Issue: "Pdm3" of the Journal Diagnostics, MDPI, Basel (I.F. near to 4.0) with deadline September 30, 2023. Both journals will provide discounts to the first accepted typescripts. See you soon at the Hotel Petrarca of Montegrotto Terme, Padua, Italy. For a promo of the 2023 Pdm3 link to: https://www.youtube.com/watch?v=zC02D4uPWRg.

11.
J Cachexia Sarcopenia Muscle ; 14(2): 730-744, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36772862

RESUMEN

Ageing is accompanied by an inexorable loss of muscle mass and functionality and represents a major risk factor for numerous diseases such as cancer, diabetes and cardiovascular and pulmonary diseases. This progressive loss of muscle mass and function may also result in the insurgence of a clinical syndrome termed sarcopenia, exacerbated by inactivity and disease. Sarcopenia and muscle weakness yield the risk of falls and injuries, heavily impacting on health and social costs. Thus, screening, monitoring and prevention of conditions inducing muscle wasting and weakness are essential to improve life quality in the ageing modern society. To this aim, the reliability of easily accessible and non-invasive blood-derived biomarkers is being evaluated. C-terminal agrin fragment (CAF) has been widely investigated as a neuromuscular junction (NMJ)-related biomarker of muscle dysfunction. This narrative review summarizes and critically discusses, for the first time, the studies measuring CAF concentration in young and older, healthy and diseased individuals, cross-sectionally and in response to inactivity and physical exercise, providing possible explanations behind the discrepancies observed in the literature. To identify the studies investigating CAF in the above-mentioned conditions, all the publications found in PubMed, written in English and measuring this biomarker in blood from 2013 (when CAF was firstly measured in human serum) to 2022 were included in this review. CAF increases with age and in sarcopenic individuals when compared with age-matched, non-sarcopenic peers. In addition, CAF was found to be higher than controls in other muscle wasting conditions, such as diabetes, COPD, chronic heart failure and stroke, and in pancreatic and colorectal cancer cachectic patients. As agrin is also expressed in kidney glomeruli, chronic kidney disease and transplantation were shown to have a profound impact on CAF independently from muscle wasting. CAF concentration raises following inactivity and seems to be lowered or maintained by exercise training. Finally, CAF was reported to be cross-sectionally correlated to appendicular lean mass, handgrip and gait speed; whether longitudinal changes in CAF are associated with those in muscle mass or performance following physical exercise is still controversial. CAF seems a reliable marker to assess muscle wasting in ageing and disease, also correlating with measurements of appendicular lean mass and muscle function. Future research should aim at enlarging sample size and accurately reporting the medical history of each patient, to normalize for any condition, including chronic kidney disease, that may influence the circulating concentration of this biomarker.


Asunto(s)
Insuficiencia Renal Crónica , Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/etiología , Agrina , Fuerza de la Mano/fisiología , Reproducibilidad de los Resultados , Atrofia Muscular , Biomarcadores , Músculos
12.
Geroscience ; 45(3): 1289-1302, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36609795

RESUMEN

Although physiological data suggest that neuromuscular junction (NMJ) dysfunction is a principal mechanism underpinning sarcopenia, genetic studies have implicated few genes involved in NMJ function. Accordingly, we explored whether genes encoding agrin (AGRN) and neurotrypsin (PRSS12) were associated with sarcopenia phenotypes: muscle mass, strength and plasma C-terminal agrin fragment (CAF). PhenoScanner was used to determine if AGRN and/or PRSS12 variants had previously been implicated with sarcopenia phenotypes. For replication, we combined genotype from whole genome sequencing with phenotypic data from 6715 GenoFit participants aged 18-83 years. Dual energy X-ray absorptiometry assessed whole body lean mass (WBLM) and appendicular lean mass (ALM), hand dynamometry determined grip strength and ELISA measured plasma CAF in a subgroup (n = 260). Follow-up analyses included eQTL analyses, carrier analyses, single-variant and gene-burden tests. rs2710873 (AGRN) and rs71608359 (PRSS12) associate with muscle mass and strength phenotypes, respectively, in the UKBB (p = 8.9 × 10-6 and p = 8.4 × 10-6) and GenoFit cohort (p = 0.019 and p = 0.014). rs2710873 and rs71608359 are eQTLs for AGRN and PRSS12, respectively, in ≥ three tissues. Compared to non-carriers, carriers of rs2710873 had 4.0% higher WBLM and ALM (both p < 0.001), and 9.5% lower CAF concentrations (p < 0.001), while carriers of rs71608359 had 2.3% lower grip strength (p = 0.034). AGRN and PRSS12 are associated with muscle strength and mass in single-variant analyses, while PRSS12 has further associations with muscle strength in gene-burden tests. Our findings provide novel evidence of the relevance of AGRN and PRSS12 to sarcopenia phenotypes and support existing physiological data illustrating the importance of the NMJ in maintaining muscle health during ageing.


Asunto(s)
Sarcopenia , Humanos , Sarcopenia/genética , Agrina/genética , Músculos
13.
J Cachexia Sarcopenia Muscle ; 14(2): 794-804, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708273

RESUMEN

BACKGROUND: Ageing is accompanied by a progressive loss of skeletal muscle mass and strength, potentially determining the insurgence of sarcopenia. Evidence suggests that motoneuron and neuromuscular junction (NMJ) degeneration contribute to sarcopenia pathogenesis. Seeking for strategies able to slow down sarcopenia insurgence and progression, we investigated whether a 2-year mixed-model training involving aerobic, strength and balance exercises would be effective for improving or preserving motoneuronal health and NMJ stability, together with muscle mass, strength and functionality in an old, sarcopenic population. METHODS: Forty-five sarcopenic elderly (34 females; 11 males) with low dual-energy X-ray absorptiometry (DXA) lean mass and Short Physical Performance Battery (SPPB) score <9 were randomly assigned to either a control group [Healthy Aging Lifestyle Education (HALE), n = 21] or an intervention group [MultiComponent Intervention (MCI), n = 24]. MCI trained three times per week for 2 years with a mix of aerobic, strength and balance exercises matched with nutritional advice. Before and after the intervention, ultrasound scans of the vastus lateralis (VL), SPPB and a blood sample were obtained. VL architecture [pennation angle (PA) and fascicle length (Lf)] and cross-sectional area (CSA) were measured. As biomarkers of neuronal health and NMJ stability status, neurofilament light chain (NfL) and C-terminal agrin fragment (CAF) concentrations were measured in serum. Differences in ultrasound parameters, NfL and CAF concentration and physical performance between baseline and follow-up were tested with mixed ANOVA or Wilcoxon test. The relationship between changes in physical performance and NfL or CAF concentration was assessed through correlation analyses. RESULTS: At follow-up, MCI showed preserved VL architecture (PA, Lf) despite a reduced CSA (-8.4%, P < 0.001), accompanied by maintained CAF concentration and ameliorated overall SPPB performance (P = 0.007). Conversely, HALE showed 12.7% decrease in muscle CSA (P < 0.001), together with 5.1% and 5.5% reduction in PA and Lf (P < 0.001 and P = 0.001, respectively), and a 6.2% increase in CAF (P = 0.009) but improved SPPB balance score (P = 0.007). NfL concentration did not change in either group. In the population, negative correlations between changes in CAF concentration and SPPB total score were found (P = 0.047), whereas no correlation between NfL and SPPB variations was observed. CONCLUSIONS: The present findings suggest that our 2-year mixed aerobic, strength and balance training seemed effective for preventing the age and sarcopenia-related increases in CAF concentration, preserving NMJ stability as well as muscle structure (PA and Lf) and improving physical performance in sarcopenic older individuals.


Asunto(s)
Sarcopenia , Masculino , Femenino , Humanos , Anciano , Sarcopenia/epidemiología , Envejecimiento/fisiología , Ejercicio Físico/fisiología , Músculo Esquelético/patología , Absorciometría de Fotón
14.
Exp Gerontol ; 173: 112102, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36693530

RESUMEN

Changes in old age that contribute to the complex issue of an increased metabolic cost of walking (mass-specific energy cost per unit distance traveled) in older adults appear to center at least in part on changes in gait biomechanics. However, age-related changes in energy metabolism, neuromuscular function and connective tissue properties also likely contribute to this problem, of which the consequences are poor mobility and increased risk of inactivity-related disease and disability. The U.S. National Institute on Aging convened a workshop in September 2021 with an interdisciplinary group of scientists to address the gaps in research related to the mechanisms and consequences of changes in mobility in old age. The goal of the workshop was to identify promising ways to move the field forward toward improving gait performance, decreasing energy cost, and enhancing mobility for older adults. This report summarizes the workshop and brings multidisciplinary insight into the known and potential causes and consequences of age-related changes in gait biomechanics. We highlight how gait mechanics and energy cost change with aging, the potential neuromuscular mechanisms and role of connective tissue in these changes, and cutting-edge interventions and technologies that may be used to measure and improve gait and mobility in older adults. Key gaps in the literature that warrant targeted research in the future are identified and discussed.


Asunto(s)
National Institute on Aging (U.S.) , Caminata , Estados Unidos , Fenómenos Biomecánicos , Marcha
15.
Gerontology ; 69(1): 73-81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35605581

RESUMEN

AIM: We planned a cross-sectional investigation (study 1) and a longitudinal training intervention (study 2) to investigate whether recreational dancing affords greater neuroprotective effects against age-related neuromuscular junction (NMJ) degeneration compared to general fitness exercise training. METHODS: In study 1, we recruited 19 older volunteers regularly practising dancing (older dancers [OD]) and 15 recreationally physically active older individuals (OA) and physical performance, muscle morphology, muscle function, and NMJ stability (from serum C-terminal agrin fragment [CAF] concentration) were assessed. In study 2, employing a longitudinal study design in a different cohort (composed of 37 older adults), we aimed to study whether a 6-month dancing intervention decreased CAF concentration compared to general fitness exercise training in older adults. RESULTS: Our findings show that OD had a lower CAF concentration (suggesting an increased NMJ stability) compared to OA. This result was accompanied by superior functional performance despite no differences in muscle size. In study 2, we observed a reduction in CAF concentration only in the dancing group. CONCLUSION: Overall, these findings suggest that dancing is an effective training modality to promote neuroprotection and increase muscle function in healthy older individuals.


Asunto(s)
Baile , Fármacos Neuroprotectores , Humanos , Anciano , Baile/fisiología , Estudios Longitudinales , Estudios Transversales , Envejecimiento
16.
Geroscience ; 45(1): 331-344, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35948859

RESUMEN

Exercise training can induce adaptive changes to tendon tissue both structurally and mechanically; however, the underlying compositional changes that contribute to these alterations remain uncertain in humans, particularly in the context of the ageing tendon. The aims of the present study were to determine the molecular changes with ageing in patellar tendons in humans, as well as the responses to exercise and exercise type (eccentric (ECC) and concentric (CON)) in young and old patellar tendon. Healthy younger males (age 23.5 ± 6.1 years; n = 27) and older males (age 68.5 ± 1.9 years; n = 27) undertook 8 weeks of CON or ECC training (3 times per week; at 60% of 1 repetition maximum (1RM)) or no training. Subjects consumed D2O throughout the protocol and tendon biopsies were collected after 4 and 8 weeks for measurement of fractional synthetic rates (FSR) of tendon protein synthesis and gene expression. There were increases in tendon protein synthesis following 4 weeks of CON and ECC training (P < 0.01; main effect by ANOVA), with no differences observed between young and old males, or training type. At the transcriptional level however, ECC in young adults generally induced greater responses of collagen and extracellular matrix-related genes than CON, while older individuals had reduced gene expression responses to training. Different training types did not appear to induce differential tendon responses in terms of protein synthesis, and while tendons from older adults exhibited different transcriptional responses to younger individuals, protein turnover changes with training were similar for both age groups.


Asunto(s)
Ligamento Rotuliano , Masculino , Humanos , Anciano , Adolescente , Ligamento Rotuliano/fisiología , Ejercicio Físico/fisiología , Envejecimiento
17.
J Cachexia Sarcopenia Muscle ; 14(1): 439-451, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36517414

RESUMEN

BACKGROUND: Inactivity and unloading induce skeletal muscle atrophy, loss of strength and detrimental metabolic effects. Bed rest is a model to study the impact of inactivity on the musculoskeletal system. It not only provides information for bed-ridden patients care, but it is also a ground-based spaceflight analogue used to mimic the challenges of long space missions for the human body. In both cases, it would be desirable to develop a panel of biomarkers to monitor muscle atrophy in a minimally invasive way at point of care to limit the onset of muscle loss in a personalized fashion. METHODS: We applied mass spectrometry-based proteomics to measure plasma protein abundance changes in response to 10 days of bed rest in 10 young males. To validate the correlation between muscle atrophy and the significant hits emerging from our study, we analysed in parallel, with the same pipeline, a cohort of cancer patients with or without cachexia and age-matched controls. Our analysis resulted in the quantification of over 500 proteins. RESULTS: Unloading affected plasma concentration of proteins of the complement cascade, lipid carriers and proteins derived from tissue leakage. Among the latter, teneurin-4 increased 1.6-fold in plasma at bed rest day 10 (BR10) compared with BR0 (6.E9 vs. 4.3E9, P = 0.02) and decreased to 0.6-fold the initial abundance after 2 days of recovery at normal daily activity (R + 2, 2.7E9, P = 3.3E-4); the extracellular matrix protein lumican was decreased to 0.7-fold (1.2E9 vs. 8.5E8, P = 1.5E-4) at BR10 and remained as low at R + 2. We identified six proteins distinguishing subjects developing unloading-mediated muscle atrophy (decrease of >4% of quadriceps cross-sectional area) from those largely maintaining their initial muscle mass. Among them, transthyretin, a thyroid hormone-binding protein, was significantly less abundant at BR10 in the plasma of subjects with muscle atrophy compared with those with no atrophy (1.6E10 vs. 2.6E10, P = 0.001). Haptoglobin-related protein was also significantly reduced in the serum of cancer patients with cachexia compared with that of controls. CONCLUSIONS: Our findings highlight a combination or proteomic changes that can be explored as potential biomarkers of muscle atrophy occurring under different conditions. The panel of significant proteomic differences distinguishing atrophy-prone and atrophy-resistant subjects after 10 days of bed rest need to be tested in a larger cohort to validate their potential to predict inactivity-triggered muscle loss in humans.


Asunto(s)
Reposo en Cama , Proteoma , Masculino , Humanos , Reposo en Cama/efectos adversos , Voluntarios Sanos , Caquexia , Proteómica , Atrofia Muscular/etiología
18.
FASEB J ; 37(1): e22668, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475382

RESUMEN

The bed rest (BR) is a ground-based model to simulate microgravity mimicking skeletal-muscle alterations as in spaceflight. Molecular coupling between bone and muscle might be involved in physiological and pathological conditions. Thus, the new myokine irisin and bone-muscle turnover markers have been studied during and after 10 days of BR. Ten young male individuals were subjected to 10 days of horizontal BR. Serum concentrations of irisin, myostatin, sclerostin, and haptoglobin were assessed, and muscle tissue gene expression on vastus lateralis biopsies was determined. During 10-days BR, we observed no significant fluctuation levels of irisin, myostatin, and sclerostin. Two days after BR (R+2), irisin serum levels significantly decreased while myostatin, sclerostin, and haptoglobin were significantly increased compared with BR0. Gene expression of myokines, inflammatory molecules, transcription factors, and markers of muscle atrophy and senescence on muscle biopsies were not altered, suggesting that muscle metabolism of young, healthy subjects is able to adapt to the hypomobility condition during 10-day BR. However, when subjects were divided according to irisin serum levels at BR9, muscle ring finger-1 mRNA expression was significantly lower in subjects with higher irisin serum levels, suggesting that this myokine may prevent the triggering of muscle atrophy. Moreover, the negative correlation between p21 mRNA and irisin at BR9 indicated a possible inhibitory effect of the myokine on the senescence marker. In conclusion, irisin could be a prognostic marker of hypomobility-induced muscle atrophy, and its serum levels could protect against muscle deterioration by preventing and/or delaying the expression of atrophy and senescence cellular markers.


Asunto(s)
Atrofia Muscular , Humanos , Masculino
19.
J Appl Physiol (1985) ; 134(1): 190-202, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476161

RESUMEN

This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.NEW & NOTEWORTHY For the first time, the neuromechanics of distinct movement modalities that fundamentally differ in their energy management function have been investigated during overload systematically induced by hypergravity. Parabolic flight provides a unique experimental setting that allows near-natural movement execution without the confounding effects typically associated with load variation. Our findings show that gravity-adjusted muscle activities are inversely affected within jumps and landings. Specifically, in 1.8 G, typical task-specific differences in neuromuscular activity are reduced during the center of mass deceleration phase, resulting in fascicle lengthening, which is associated with energy dissipation.


Asunto(s)
Músculo Esquelético , Tendones , Humanos , Fenómenos Biomecánicos , Tendones/fisiología , Músculo Esquelético/fisiología , Electromiografía , Pierna/fisiología , Contracción Muscular/fisiología
20.
Ageing Res Rev ; 83: 101810, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36471545

RESUMEN

Physical inactivity (PI) is a major risk factor of chronic diseases. A major aspect of PI is loss of muscle mass and strength. The latter phenomenon significantly impacts daily life and represent a major issue for global health. Understandably, skeletal muscle itself has been the major focus of studies aimed at understanding the mechanisms underlying loss of mass and strength. Relatively lesser attention has been given to the contribution of alterations in somatomotor control, despite the fact that these changes can start very early and can occur at multiple levels, from the cortex down to the neuromuscular junction (NMJ). It is well known that exposure to chronic inactivity or immobilization causes a disproportionate loss of force compared to muscle mass, i.e. a loss of specific or intrinsic whole muscle force. The latter phenomenon may be partially explained by the loss of specific force of individual muscle fibres, but several other players are very likely to contribute to such detrimental phenomenon. Irrespective of the length of the disuse period, the loss of force is, in fact, more than two-fold greater than that of muscle size. It is very likely that somatomotor alterations may contribute to this loss in intrinsic muscle force. Here we review evidence that alterations of one component of somatomotor control, namely the neuromuscular junction, occur in disuse. We also discuss some of the novel players in NMJ stability (e.g., homer, bassoon, pannexin) and the importance of new established and emerging molecular markers of neurodegenerative processes in humans such as agrin, neural-cell adhesion molecule and light-chain neurofilaments.


Asunto(s)
Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/patología , Músculo Esquelético/patología , Unión Neuromuscular , Fibras Musculares Esqueléticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...