Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(13): 15410-15420, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38585116

RESUMEN

Safety concerns of traditional liquid electrolytes, especially when paired with lithium (Li) metal anodes, have stimulated research of solid polymer electrolytes (SPEs) to exploit the superior thermal and mechanical properties of polymers. Polyphosphazenes are primarily known for their use as flame retardant materials and have demonstrated high Li-ion conductivity owing to their highly flexible P = N backbone which promotes Li-ion conduction via inter- and intrachain hopping along the polymer backbone. While polyphosphazenes are largely unexplored as SPEs in the literature, a few existing examples showed promising ionic conductivity. By anchoring the anion to the polymer backbone, one may primarily allow the movement of Li ions, alleviating the detrimental effects of polarization that are common in conventional dual-ion conducting SPEs. Anion-anchored SPEs, known as single Li-ion conducting solid polymer electrolytes (SLiC-SPEs), exhibit high Li-ion transference numbers (tLi+), which limits Li dendrite growth, thus further increasing the safety of SPEs. However, previously reported SLiC-SPEs suffer from inadequate ionic conductivity, small electrochemical stability windows (ESWs), and limited cycling stability. Herein, we report three polyphosphazene-based SLiC-SPEs comprising lithiated polyphosphazenes. The SLiC polyphosphazenes were prepared through a facile synthesis route, opening the door for enhanced tunability of polymer properties via facile macromolecular nucleophilic substitution and subsequent lithiation. State-of-the-art characterization techniques, such as differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and solid-state nuclear magnetic resonance spectroscopy (ssNMR) were employed to probe the effect of the polymer structure on Li-ion dynamics and other electrochemical properties. Produced SPEs showed thermal stability up to ∼208 °C with ionic conductivities comparable to that of the best-reported SLiC-SPEs that definitively comprise no solvents or plasticizers. Among the three lithiated polyphosphazenes, the SPE containing dilithium poly[bis(trifluoroethylamino)phosphazene] (pTFAP2Li) exhibited the most promising electrochemical characteristics with tLi+ of 0.76 and compatibility with both Li metal anodes and LiFePO4 (LFP) cathodes; through 40 cycles at 100 °C, the PEO-pTFAP2Li blend showed 81.2% capacity utilization and 86.8% capacity retention. This work constitutes one of the first successful demonstrations of the cycling performance of a true all-solid-state Li-metal battery using SLiC polyphosphazene SPEs.

2.
ACS Appl Mater Interfaces ; 15(27): 32678-32686, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37364171

RESUMEN

Current lithium-ion battery separators made from polyolefins such as polypropylene and polyethylene generally suffer from low porosity, low wettability, and slow ionic conductivity and tend to perform poorly against heat-triggering reactions that may cause potentially catastrophic issues, such as fire. To overcome these limitations, here we report that a porous composite membrane consisting of poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers functionalized with nanodiamonds (NDs) can realize a thermally resistant, mechanically robust, and ionically conductive separator. We critically reveal the role of NDs in the polymer matrix of the membrane to improve the thermal, mechanical, crystalline, and electrochemical properties of the composites. Taking advantages of these characteristics, the ND-functionalized nanofiber separator enables high-capacity and stable cycling of lithium cells with LiNi0.8Mn0.1Co0.1O2 (NMC811) as the cathode, much superior to those using conventional polyolefin separators in otherwise identical cells.

3.
Nat Mater ; 20(7): 984-990, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33686276

RESUMEN

All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi0.33Mn0.33Co0.33O2 cathodes and both Li4Ti5O12 and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.

4.
Angew Chem Int Ed Engl ; 59(1): 403-408, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31604002

RESUMEN

Technologically important composites with enhanced thermal and mechanical properties rely on the reinforcement by the high specific strength ceramic nanofibers or nanowires (NWs) with high aspect ratios. However, conventional synthesis routes to produce such ceramic NWs have prohibitively high cost. Now, direct transformation of bulk Mg-Li alloys into Mg alkoxide NWs is demonstrated without the use of catalysts, templates, expensive or toxic chemicals, or any external stimuli. This mechanism proceeds through the minimization of strain energy at the boundary of phase transformation front leading to the formation of ultra-long NWs with tunable dimensions. Such alkoxide NWs can be easily converted in air into ceramic MgO NWs with similar dimensions. The impact of the alloy grain size and Li content, synthesis temperature, inductive and steric effects of alkoxide groups on the diameter, length, composition, ductility, and oxidation of the produced NWs is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...