Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 75, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911598

RESUMEN

The functions of the heart are achieved through coordination of different cardiac cell subtypes (e.g., ventricular, atrial, conduction-tissue cardiomyocytes). Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer unique opportunities for cardiac research. Traditional studies using these cells focused on single-cells and utilized mixed cell populations. Our goal was to develop clinically-relevant engineered heart tissues (EHTs) comprised of chamber-specific hPSC-CMs. Here we show that such EHTs can be generated by directing hPSCs to differentiate into ventricular or atrial cardiomyocytes, and then embedding these cardiomyocytes in a collagen-hydrogel to create chamber-specific, ring-shaped, EHTs. The chamber-specific EHTs display distinct atrial versus ventricular phenotypes as revealed by immunostaining, gene-expression, optical assessment of action-potentials and conduction velocity, pharmacology, and mechanical force measurements. We also establish an atrial EHT-based arrhythmia model and confirm its usefulness by applying relevant pharmacological interventions. Thus, our chamber-specific EHT models can be used for cardiac disease modeling, pathophysiological studies and drug testing.


Asunto(s)
Atrios Cardíacos/citología , Ventrículos Cardíacos/citología , Miocardio/citología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Potenciales de Acción , Diferenciación Celular , Atrios Cardíacos/crecimiento & desarrollo , Ventrículos Cardíacos/crecimiento & desarrollo , Humanos , Ingeniería de Tejidos
2.
Stem Cell Reports ; 12(5): 996-1006, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31031187

RESUMEN

Ibrutinib (IB) is an oral Bruton's tyrosine kinase (BTK) inhibitor that has demonstrated benefit in B cell cancers, but is associated with a dramatic increase in atrial fibrillation (AF). We employed cell-specific differentiation protocols and optical mapping to investigate the effects of IB and other tyrosine kinase inhibitors (TKIs) on the voltage and calcium transients of atrial and ventricular human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). IB demonstrated direct cell-specific effects on atrial hPSC-CMs that would be predicted to predispose to AF. Second-generation BTK inhibitors did not have the same effect. Furthermore, IB exposure was associated with differential chamber-specific regulation of a number of regulatory pathways including the receptor tyrosine kinase pathway, which may be implicated in the pathogenesis of AF. Our study is the first to demonstrate cell-type-specific toxicity in hPSC-derived atrial and ventricular cardiomyocytes, which reliably reproduces the clinical cardiotoxicity observed.


Asunto(s)
Corazón/efectos de los fármacos , Miocardio/citología , Miocitos Cardíacos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Pirazoles/farmacología , Pirimidinas/farmacología , Adenina/análogos & derivados , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Cardiotoxicidad/diagnóstico , Cardiotoxicidad/fisiopatología , Diferenciación Celular , Células Cultivadas , Corazón/fisiopatología , Atrios Cardíacos/citología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/fisiopatología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/fisiopatología , Humanos , Miocitos Cardíacos/citología , Especificidad de Órganos , Piperidinas , Células Madre Pluripotentes/citología , Inhibidores de Proteínas Quinasas/farmacología
3.
Nat Biotechnol ; 33(6): 638-45, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25961409

RESUMEN

The replacement of articular cartilage through transplantation of chondrogenic cells or preformed cartilage tissue represents a potential new avenue for the treatment of degenerative joint diseases. Although many studies have described differentiation of human pluripotent stem cells (hPSCs) to the chondrogenic lineage, the generation of chondrocytes able to produce stable articular cartilage in vivo has not been demonstrated. Here we show that activation of the TGFß pathway in hPSC-derived chondrogenic progenitors promotes the efficient development of articular chondrocytes that can form stable cartilage tissue in vitro and in vivo. In contrast, chondrocytes specified by BMP4 signaling display characteristics of hypertrophy and give rise to cartilage tissues that initiate the endochondral ossification process in vivo. These findings provide a simple serum-free and efficient approach for the routine generation of hPSC-derived articular chondrocytes for modeling diseases of the joint and developing cell therapy approaches to treat them.


Asunto(s)
Cartílago Articular/citología , Diferenciación Celular/genética , Artropatías/terapia , Células Madre Pluripotentes/trasplante , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Cartílago Articular/crecimiento & desarrollo , Condrocitos/citología , Humanos , Artropatías/patología , Células Madre Mesenquimatosas/citología , Células Madre Pluripotentes/citología , Transducción de Señal/genética
4.
Autophagy ; 8(10): 1462-76, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22889933

RESUMEN

Reactive oxygen species (ROS) have been implicated as a signal for general autophagy. Both mitochondrial-produced and exogenous ROS induce autophagosome formation. However, it is unclear whether ROS are required for the selective autophagic degradation of mitochondria, a process called mitophagy. Recent work using carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial-uncoupling reagent, has been shown to induce mitophagy. However, CCCP treatment may not be biologically relevant since it causes the depolarization of the entire mitochondrial network. Since mitochondria are the main ROS production sites in mammalian cells, we propose that short bursts of ROS produced within mitochondria may be involved in the signaling for mitophagy. To test this hypothesis, we induced an acute burst of ROS within mitochondria using a mitochondrial-targeted photosensitizer, mitochondrial KillerRed (mtKR). Using mtKR, we increased ROS levels in the mitochondrial matrix, which resulted in the loss of membrane potential and the subsequent activation of PARK2-dependent mitophagy. Importantly, we showed that overexpression of the mitochondrial antioxidant protein, superoxide dismutase-2, can squelch mtKR-induced mitophagy, demonstrating that mitochondrial ROS are responsible for mitophagy activation. Using this assay, we examined the impact of mitochondrial morphology on mitophagy. It was shown recently that elongated mitochondria are more resistant to mitophagy through unknown mechanisms. Here, we show that elongated mitochondria are more resistant to ROS-induced damage and mitophagy compared with fragmented mitochondria, suggesting that mitochondrial morphology has an important role in regulating ROS and mitophagy. Together, our results suggest that ROS-induced mitochondrial damage may be an important upstream activator of mitophagy.


Asunto(s)
Autofagia , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Mitofagia , Especies Reactivas de Oxígeno/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Células HeLa , Humanos , Fotoblanqueo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...