Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 60(17): 12893-12905, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34369768

RESUMEN

In glasses, a sodium ion (Na+) is a significant mobile cation that takes up a dual role, that is, as a charge compensator and also as a network modifier. As a network modifier, Na+ cations modify the structural distributions and create nonbridging oxygens. As a charge compensator, Na+ cations provide imbalanced charge for oxygen that is linked between two network-forming tetrahedra. However, the factors controlling the mobility of Na+ ions in glasses, which in turn affects the ionic conductivity, remain unclear. In the current work, using high-fidelity experiments and atomistic simulations, we demonstrate that the ionic conductivity of the Na3Al2P3O12 (Si0) glass material is dependent not only on the concentration of Na+ charge carriers but also on the number of charge-compensated oxygens within its first coordination sphere. To investigate, we chose a series of glasses formulated by the substitution of Si for P in Si0 glass based on the hypothesis that Si substitution in the presence of Na+ cations increases the number of Si-O-Al bonds, which enhances the role of Na as a charge compensator. The structural and conductivity properties of bulk glass materials are evaluated by molecular dynamics (MD) simulations, magic angle spinning-nuclear magnetic resonance, Raman spectroscopy, and impedance spectroscopy. We observe that the increasing number of charge-imbalanced bridging oxygens (BOs) with the substitution of Si for P in Si0 glass enhances the ionic conductivity by an order of magnitude-from 3.7 × 10-8 S.cm-1 to 3.3 × 10-7 S.cm-1 at 100 °C. By rigorously quantifying the channel regions in the glass structure, using MD simulations, we demonstrate that the enhanced ionic conductivity can be attributed to the increased connectivity of Na-rich channels because of the increased charge-compensated BOs around the Na atoms. Overall, this study provides new insights for designing next-generation glass-based electrolytes with superior ionic conductivity for Na-ion batteries.

2.
Inorg Chem ; 56(4): 2354-2362, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28177255

RESUMEN

One-dimensional Haldane gap materials, such as the rare earth barium chain nickelates, have received great interest due to their vibrant one-dimensional spin antiferromagnetic character and unique structure. Herein we report how these 1D structural features can also be highly beneficial for thermoelectric applications by analysis of the system CaxBaGd2-xNiO5 0 ≤ x ≤ 0.25. Attractive Seebeck coefficients of 140-280 µV K-1 at 350-1300 K are retained even at high acceptor-substitution levels, provided by the interplay of low dimensionality and electronic correlations. Furthermore, the highly anisotropic crystal structure of Haldane gap materials allows very low thermal conductivities, reaching only 1.5 W m-1 K-1 at temperatures above 1000 K, one of the lowest values currently documented for prospective oxide thermoelectrics. Although calcium substitution in BaGd2NiO5 increases the electrical conductivity up to 5-6 S cm-1 at 1150 K < T < 1300 K, this level remains insufficient for thermoelectric applications. Hence, the combination of highly promising Seebeck coefficients and low thermal conductivities offered by this 1D material type underscores a potential new structure type for thermoelectric materials, where the main challenge will be to engineer the electronic band structure and, probably, microstructural features to further enhance the mobility of the charge carriers.

3.
Chemphyschem ; 18(3): 287-291, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-27860105

RESUMEN

This study highlights that Fe additives offer better catalytic properties than carbon, Fe-C (iron carbide/carbon composites), and Fe-Mg (Mg2 FeH6 ) additives for the low-temperature dehydrogenation of magnesium hydride. The in situ X-ray diffraction measurements prove the formation of a Mg2 FeH6 phase in iron additive loaded MgH2 . Nonetheless, differential scanning calorimetry data suggest that this Mg2 FeH6 phase does not have any influence on dehydrogenation properties of MgH2 . On the other hand, the composite system Mg2 FeH6 /MgH2 shows significantly improved dehydrogenation properties even in absence of further additives. It is suggested that the improved system performance of Fe loaded MgH2 is attributed to restrictions on crystal growth of MgH2 and the catalytic behavior of Fe nanoparticles, rather than any intrinsic catalytic properties offered by the formed mixed metal phase Mg2 FeH6 .

4.
Chemphyschem ; 17(1): 178-83, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26751834

RESUMEN

The present study aims to understand the catalysis of the MgH2 -Nb2 O5 hydrogen storage system. To clarify the chemical interaction between MgH2 and Nb2 O5 , the mechanochemical reaction products of a composite mixture of MgH2 +0.167 Nb2 O5 was monitored at different time intervals (2, 5, 15, 30, and 45 min, as well as 1, 2, 5, 10, 15, 20, 25, and 30 h). The study confirms the formation of catalytically active Nb-doped MgO nanoparticles (typically Mgx Nby Ox+y , with a crystallite size of 4-8 nm) by transforming reactants through an intermediate phase typified by Mgm-x Nb2n-y O5n-(x+y) . The initially formed Mgx Nby Ox+y product is shown to be Nb rich, with the concentration of Mg increasing upon increasing milling time. The nanoscale end-product Mgx Nby Ox+y closely resembles the crystallographic features of MgO, but with at least a 1-4 % higher unit cell volume. Unlike MgO, which is known to passivate the surfaces in MgH2 system, the Nb-dissolved MgO effectively mediates the Mg-H2 sorption reaction in the system. We believe that this observation will lead to new developments in the area of catalysis for metal-gas interactions.

5.
Phys Chem Chem Phys ; 17(17): 11527-39, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25857870

RESUMEN

The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in the electrochemical performance of the oxygen electrode. Half cells of Ce0.8R0.2O2-δ + 2 mol% Co buffer layers (where R = Gd, Pr) with Nd2NiO4+δ electrodes were fabricated by spin coating on dense YSZ electrolyte supports. Dramatic decreases in polarization resistance, Rp, of up to an order of magnitude, could be achieved in the order, Pr ≪ Gd < no buffer layer. The current article shows how this improvement can be related to increased levels of ambipolar conductivity in the mixed conducting buffer layer, which provides an additional parallel path for electrochemical reaction. This is an important breakthrough as it shows how electrode polarization resistance can be substantially improved, in otherwise identical electrochemical cells, solely by tailoring the transport properties of thin intermediate buffer layers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA