Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nutrients ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931225

RESUMEN

Dietary factors can modify the function of the intestinal barrier, causing permeability changes. This systematic review analyzed evidence on the link between diet or dietary interventions and changes in intestinal barrier permeability (IBP) in healthy individuals. A systematic search for primary studies was conducted using the virtual databases EMBASE, PubMed, Web of Science, CINAHL, and Scopus. This review adhered to PRISMA 2020 guidelines, assessing the methodological quality using the Newcastle-Ottawa scale for observational studies and ROB 2.0 for randomized clinical trials. Out of 3725 studies recovered, 12 were eligible for review. Chicory inulin and probiotics reduced IBP in adults with a moderate GRADE level of evidence. The opposite result was obtained with fructose, which increased IBP in adults, with a very low GRADE level of evidence. Only intervention studies with different dietary components were found, and few studies evaluated the effect of specific diets on the IBP. Thus, there was no strong evidence that diet or dietary interventions increase or decrease IBP in healthy individuals. Studies on this topic are necessary, with a low risk of bias and good quality of evidence generated, as there is still little knowledge on healthy populations.


Asunto(s)
Dieta , Mucosa Intestinal , Permeabilidad , Humanos , Dieta/métodos , Mucosa Intestinal/metabolismo , Probióticos/administración & dosificación , Adulto , Inulina/administración & dosificación , Inulina/farmacología , Voluntarios Sanos , Fructosa/administración & dosificación , Intestinos/fisiología , Femenino , Masculino , Cichorium intybus/química , Funcion de la Barrera Intestinal
2.
Rev. Baiana Saúde Pública ; 48(1): 120-136, 20240426.
Artículo en Portugués | LILACS-Express | LILACS | ID: biblio-1555793

RESUMEN

Os homicídios de policiais estão associados a fatores individuais, sociais e do trabalho. Dessa forma, o objetivo deste artigo é caracterizar a mortalidade por homicídio de policiais civis da Bahia entre 2012 e 2019. Trata-se de estudo descritivo de vigilância da mortalidade de homicídios de policiais civis da ativa. As variáveis estudadas foram sociodemográficas, da atividade policial e da ocorrência. Na análise foram realizados cálculos de taxas de mortalidade e da estatística descritiva, por meio da linguagem computacional R versão 4.2.2. Foram registrados 27 homicídios de policiais civis da ativa, o que equivale a uma taxa média de 0,58/1000. Na caracterização, todos eram homens, com idade média de 52,5 anos (42 a 63 anos) e 95% negros. Em relação à atividade policial, 76% eram investigadores, com média de 17,9 anos (3 a 33 anos) de serviço e 81% das mortes ocorreram em horário de folga. Em 90% dos homicídios a arma de fogo foi o instrumento causador da morte, e em 62% dos casos a autoria não foi identificada. Conclui-se que o perfil sociodemográfico, do trabalho e das ocorrências de homicídios de policiais civis é semelhante ao perfil encontrado entre policiais militares e sobretudo aos homicídios da população geral.


Police homicides are associated with individual, social, and work-related factors. To characterize mortality due to homicide cases of civil police officers in the State of Bahia from 2012 to 2019.This is a descriptive study of mortality surveillance regarding the homicides of active civil police officers. The variables studied included sociodemographic, police activity, and event occurrence rates. In the analysis, mortality rates and descriptive statistics were calculated using the computational language R, version 4.2.2. Overall, 27 cases of homicide of civil police officers were registered, with an average rate of 0.58/1000 civil police officers. In the characterization, all victims were men with an average age of 52.5 years (42 to 63 years) and a 95% percent Black ethnicity. Regarding police activity, 76% were investigators, with an average of 17.9 years (3 to 33 years) of service, and 81% of deaths occurred during off-duty hours. In 90% of homicide cases, firearms were the instrument that caused death, and in 62% of cases the perpetrator was unidentified. The sociodemographic, work, and homicide profile of civil police officers resembles the profile among military police officers and especially that of homicides in the general population.


Los homicidios de policías están asociados a factores individuales, sociales y laborales. El objetivo de este artículo fue caracterizar la mortalidad por homicidio de policías civiles en el estado de Bahía (Brasil), en el período entre 2012 y 2019. Se trata de un estudio descriptivo de la vigilancia de la mortalidad por homicidios de policías civiles en activo. Las variables estudiadas fueron sociodemográficas, actividad policial y ocurrencia. En el análisis se realizaron cálculos de tasas de mortalidad y estadísticas descriptivas utilizando el lenguaje computacional R, versión 4.2.2.Se registraron 27 homicidios de policías civiles en activo, con una media de 0,58/1000 policías civiles. En la caracterización, todos eran hombres, con media de edad de 52,5 años (42 a 63 años), y el 95%, negros. Con relación a la actividad policial, el 76% se desempeñaban como investigadores, con un promedio de 17,9 años (3 a 33 años) de servicio y el 81% de las muertes ocurrieron fuera de servicio. En el 90% de los homicidios, el arma de fuego fue el instrumento que provocó la muerte y en el 62% de los casos no se identificó al autor. Se concluye que el perfil sociodemográfico, laboral y de homicidios de los policías civiles es similar al perfil encontrado entre los policías militares y, especialmente, a los homicidios en la población general.

3.
Br J Pharmacol ; 181(8): 1308-1323, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990806

RESUMEN

BACKGROUND AND PURPOSE: Sepsis-surviving adult individuals commonly develop immunosuppression and increased susceptibility to secondary infections, an outcome mediated by the axis IL-33/ILC2s/M2 macrophages/Tregs. Nonetheless, the long-term immune consequences of paediatric sepsis are indeterminate. We sought to investigate the role of age in the genesis of immunosuppression following sepsis. EXPERIMENTAL APPROACH: Here, we compared the frequency of Tregs, the activation of the IL-33/ILC2s axis in M2 macrophages and the DNA methylation of epithelial lung cells from post-septic infant and adult mice. Likewise, sepsis-surviving mice were inoculated intranasally with Pseudomonas aeruginosa or by subcutaneous inoculation of the B16 melanoma cell line. Finally, blood samples from sepsis-surviving patients were collected and the concentration of IL-33 and Tregs frequency were assessed. KEY RESULTS: In contrast to 6-week-old mice, 2-week-old mice were resistant to secondary infection and did not show impairment in tumour controls upon melanoma challenge. Mechanistically, increased IL-33 levels, Tregs expansion, and activation of ILC2s and M2-macrophages were observed in 6-week-old but not 2-week-old post-septic mice. Moreover, impaired IL-33 production in 2-week-old post-septic mice was associated with increased DNA methylation in lung epithelial cells. Notably, IL-33 treatment boosted the expansion of Tregs and induced immunosuppression in 2-week-old mice. Clinically, adults but not paediatric post-septic patients exhibited higher counts of Tregs and seral IL-33 levels. CONCLUSION AND IMPLICATIONS: These findings demonstrate a crucial and age-dependent role for IL-33 in post-sepsis immunosuppression. Thus, a better understanding of this process may lead to differential treatments for adult and paediatric sepsis.


Asunto(s)
Interleucina-33 , Sepsis , Humanos , Ratones , Animales , Niño , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos/patología , Terapia de Inmunosupresión
4.
Sci Rep ; 13(1): 13599, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604833

RESUMEN

The TIGIT+FOXP3+Treg subset (TIGIT+Tregs) exerts robust suppressive activity on cellular immunity and predisposes septic individuals to opportunistic infection. We hypothesized that TIGIT+Tregs could play an important role in intensifying the COVID-19 severity and hampering the defense against nosocomial infections during hospitalization. Herein we aimed to verify the association between the levels of the TIGIT+Tregs with the mechanical ventilation requirement, fatal outcome, and bacteremia during hospitalization. TIGIT+Tregs were immunophenotyped by flow cytometry from the peripheral blood of 72 unvaccinated hospitalized COVID-19 patients at admission from May 29th to August 6th, 2020. The patients were stratified during hospitalization according to their mechanical ventilation requirement and fatal outcome. COVID-19 resulted in a high prevalence of the TIGIT+Tregs at admission, which progressively increased in patients with mechanical ventilation needs and fatal outcomes. The prevalence of TIGIT+Tregs positively correlated with poor pulmonary function and higher plasma levels of LDH, HMGB1, FGL2, and TNF. The non-survivors presented higher plasma levels of IL-33, HMGB1, FGL2, IL-10, IL-6, and 5.54 times more bacteremia than survivors. Conclusions: The expansion of the TIGIT+Tregs in COVID-19 patients was associated with inflammation, lung dysfunction, bacteremia, and fatal outcome.


Asunto(s)
Bacteriemia , COVID-19 , Infección Hospitalaria , Proteína HMGB1 , Humanos , Respiración Artificial , Linfocitos T Reguladores , Receptores Inmunológicos , Fibrinógeno
5.
Nat Commun ; 14(1): 4280, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460614

RESUMEN

Neutrophils rely predominantly on glycolytic metabolism for their biological functions, including reactive oxygen species (ROS) production. Although pyruvate kinase M2 (PKM2) is a glycolytic enzyme known to be involved in metabolic reprogramming and gene transcription in many immune cell types, its role in neutrophils remains poorly understood. Here, we report that PKM2 regulates ROS production and microbial killing by neutrophils. Zymosan-activated neutrophils showed increased cytoplasmic expression of PKM2. Pharmacological inhibition or genetic deficiency of PKM2 in neutrophils reduced ROS production and Staphylococcus aureus killing in vitro. In addition, this also resulted in phosphoenolpyruvate (PEP) accumulation and decreased dihydroxyacetone phosphate (DHAP) production, which is required for de novo synthesis of diacylglycerol (DAG) from glycolysis. In vivo, PKM2 deficiency in myeloid cells impaired the control of infection with Staphylococcus aureus. Our results fill the gap in the current knowledge of the importance of lower glycolysis for ROS production in neutrophils, highlighting the role of PKM2 in regulating the DHAP and DAG synthesis to promote ROS production in neutrophils.


Asunto(s)
Neutrófilos , Piruvato Quinasa , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo , Fosforilación , Glucólisis
6.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37104043

RESUMEN

Patients with severe COVID-19 develop acute respiratory distress syndrome (ARDS) that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that complement component 5a (C5a), through its cellular receptor C5aR1, has potent proinflammatory actions and plays immunopathological roles in inflammatory diseases, we investigated whether the C5a/C5aR1 pathway could be involved in COVID-19 pathophysiology. C5a/C5aR1 signaling increased locally in the lung, especially in neutrophils of critically ill patients with COVID-19 compared with patients with influenza infection, as well as in the lung tissue of K18-hACE2 Tg mice (Tg mice) infected with SARS-CoV-2. Genetic and pharmacological inhibition of C5aR1 signaling ameliorated lung immunopathology in Tg-infected mice. Mechanistically, we found that C5aR1 signaling drives neutrophil extracellular traps-dependent (NETs-dependent) immunopathology. These data confirm the immunopathological role of C5a/C5aR1 signaling in COVID-19 and indicate that antagonists of C5aR1 could be useful for COVID-19 treatment.


Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , Animales , Ratones , COVID-19/genética , COVID-19/patología , Trampas Extracelulares/metabolismo , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/metabolismo , Pulmón/patología , Complemento C5a/genética , Complemento C5a/metabolismo
7.
Immunity ; 56(2): 232-234, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36792568

RESUMEN

Pregnancy predisposes women to develop severe sepsis. However, the mechanisms regulating this remain unclear. In this issue of Immunity, Chen et al. describe the critical role of gut dysbiosis during pregnancy in driving excessive macrophage pyroptosis, increasing susceptibility to sepsis.


Asunto(s)
Microbioma Gastrointestinal , Sepsis , Embarazo , Humanos , Femenino , Microbioma Gastrointestinal/fisiología , Disbiosis
8.
Arch Virol ; 167(12): 2743-2747, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36129527

RESUMEN

Passiflora virus Y was detected naturally infecting soybean (Glycine max) for the first time in Brazil. Here, we report the nearly complete genome sequence and molecular and biological properties of the PaVY-Br isolate. The nearly complete genome sequence is 9679 nt long and shares 84.4% nt sequence identity with a previously reported PaVY isolate from Passiflora sp. PaVY-Br induced chlorotic spots and systemic mosaic on soybean and chlorotic local lesions on yellow passion fruit (Passiflora edulis) and sesame (Sesamum indicum). The virus was successfully transmitted by Myzus persicae, indicating that this aphid vector can contribute to the spread of PaYV from passion fruit to soybean plants. Additional epidemiological research is in progress to investigate the distribution of PaVY in soybean production areas in Brazil.


Asunto(s)
Passiflora , Potyvirus , Potyvirus/genética , Glycine max , Enfermedades de las Plantas , Filogenia
9.
Crit Care ; 26(1): 206, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799268

RESUMEN

BACKGROUND: The release of neutrophil extracellular traps (NETs) is associated with inflammation, coagulopathy, and organ damage found in severe cases of COVID-19. However, the molecular mechanisms underlying the release of NETs in COVID-19 remain unclear. OBJECTIVES: We aim to investigate the role of the Gasdermin-D (GSDMD) pathway on NETs release and the development of organ damage during COVID-19. METHODS: We performed a single-cell transcriptome analysis in public data of bronchoalveolar lavage. Then, we enrolled 63 hospitalized patients with moderate and severe COVID-19. We analyze in blood and lung tissue samples the expression of GSDMD, presence of NETs, and signaling pathways upstreaming. Furthermore, we analyzed the treatment with disulfiram in a mouse model of SARS-CoV-2 infection. RESULTS: We found that the SARS-CoV-2 virus directly activates the pore-forming protein GSDMD that triggers NET production and organ damage in COVID-19. Single-cell transcriptome analysis revealed that the expression of GSDMD and inflammasome-related genes were increased in COVID-19 patients. High expression of active GSDMD associated with NETs structures was found in the lung tissue of COVID-19 patients. Furthermore, we showed that activation of GSDMD in neutrophils requires active caspase1/4 and live SARS-CoV-2, which infects neutrophils. In a mouse model of SARS-CoV-2 infection, the treatment with disulfiram inhibited NETs release and reduced organ damage. CONCLUSION: These results demonstrated that GSDMD-dependent NETosis plays a critical role in COVID-19 immunopathology and suggests GSDMD as a novel potential target for improving the COVID-19 therapeutic strategy.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Trampas Extracelulares , Animales , Disulfiram/metabolismo , Trampas Extracelulares/metabolismo , Ratones , Neutrófilos/metabolismo , SARS-CoV-2
10.
Elife ; 112022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666101

RESUMEN

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antiinflamatorios/farmacología , Apoptosis , Humanos , Macrófagos/metabolismo , Fagocitosis
11.
Cell Rep ; 39(8): 110838, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35613599

RESUMEN

External and intrinsic factors regulate the transcriptional profile of T helper 17 (TH17) cells, thereby affecting their pathogenic potential and revealing their context-dependent plasticity. The stimulator of interferon genes (STING), a component of the intracellular DNA-sensing pathway, triggers immune responses but remains largely unexplored in T cells. Here, we describe an intrinsic role of STING in limiting the TH17 cell pathogenic program. We demonstrate that non-pathogenic TH17 cells express higher levels of STING than those activated under pathogenic conditions. Activation of STING induces interleukin-10 (IL-10) production in TH17 cells, decreasing IL-17A and IL-23R expression in a type I interferon (IFN)-independent manner. Mechanistically, STING-induced IL-10 production partially requires aryl hydrocarbon receptor (AhR) signaling, while the decrease of IL-17A expression occurs due to a reduction of Rorγt transcriptional activity. Our findings reveal a regulatory function of STING in the TH17 cell activation program, proposing it as a valuable target to limit TH17-cell-mediated inflammation.


Asunto(s)
Interleucina-10 , Interleucina-17 , Células Cultivadas , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Transducción de Señal , Células Th17
12.
J Mol Cell Biol ; 14(4)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35451490

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Asunto(s)
COVID-19 , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Humanos , Leucocitos Mononucleares , Monocitos
13.
Front Oncol ; 11: 686445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650910

RESUMEN

In approximately 15% of patients with acute myeloid leukemia (AML), total and phosphorylated EGFR proteins have been reported to be increased compared to healthy CD34+ samples. However, it is unclear if this subset of patients would benefit from EGFR signaling pharmacological inhibition. Pre-clinical studies on AML cells provided evidence on the pro-differentiation benefits of EGFR inhibitors when combined with ATRA or ATO in vitro. Despite the success of ATRA and ATO in the treatment of patients with acute promyelocytic leukemia (APL), therapy-associated resistance is observed in 5-10% of the cases, pointing to a clear need for new therapeutic strategies for those patients. In this context, the functional role of EGFR tyrosine-kinase inhibitors has never been evaluated in APL. Here, we investigated the EGFR pathway in primary samples along with functional in vitro and in vivo studies using several APL models. We observed that total and phosphorylated EGFR (Tyr992) was expressed in 28% and 19% of blast cells from APL patients, respectively, but not in healthy CD34+ samples. Interestingly, the expression of the EGF was lower in APL plasma samples than in healthy controls. The EGFR ligand AREG was detected in 29% of APL patients at diagnosis, but not in control samples. In vitro, treatment with the EGFR inhibitor gefitinib (ZD1839) reduced cell proliferation and survival of NB4 (ATRA-sensitive) and NB4-R2 (ATRA-resistant) cells. Moreover, the combination of gefitinib with ATRA and ATO promoted myeloid cell differentiation in ATRA- and ATO-resistant APL cells. In vivo, the combination of gefitinib and ATRA prolonged survival compared to gefitinib- or vehicle-treated leukemic mice in a syngeneic transplantation model, while the gain in survival did not reach statistical difference compared to treatment with ATRA alone. Our results suggest that gefitinib is a potential adjuvant agent that can mitigate ATRA and ATO resistance in APL cells. Therefore, our data indicate that repurposing FDA-approved tyrosine-kinase inhibitors could provide new perspectives into combination therapy to overcome drug resistance in APL patients.

14.
Immunity ; 54(9): 2024-2041.e8, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34473957

RESUMEN

Sepsis results in elevated adenosine in circulation. Extracellular adenosine triggers immunosuppressive signaling via the A2a receptor (A2aR). Sepsis survivors develop persistent immunosuppression with increased risk of recurrent infections. We utilized the cecal ligation and puncture (CLP) model of sepsis and subsequent infection to assess the role of adenosine in post-sepsis immune suppression. A2aR-deficient mice showed improved resistance to post-sepsis infections. Sepsis expanded a subset of CD39hi B cells and elevated extracellular adenosine, which was absent in mice lacking CD39-expressing B cells. Sepsis-surviving B cell-deficient mice were more resistant to secondary infections. Mechanistically, metabolic reprogramming of septic B cells increased production of ATP, which was converted into adenosine by CD39 on plasmablasts. Adenosine signaling via A2aR impaired macrophage bactericidal activity and enhanced interleukin-10 production. Septic individuals exhibited expanded CD39hi plasmablasts and adenosine accumulation. Our study reveals CD39hi plasmablasts and adenosine as important drivers of sepsis-induced immunosuppression with relevance in human disease.


Asunto(s)
Adenosina/inmunología , Antígenos CD/inmunología , Apirasa/inmunología , Tolerancia Inmunológica/inmunología , Macrófagos/inmunología , Células Plasmáticas/inmunología , Sepsis/inmunología , Adenosina/metabolismo , Animales , Antígenos CD/metabolismo , Apirasa/metabolismo , Reprogramación Celular/inmunología , Macrófagos/metabolismo , Ratones , Células Plasmáticas/metabolismo , Receptor de Adenosina A2A/inmunología , Receptor de Adenosina A2A/metabolismo , Sepsis/metabolismo
15.
Blood ; 138(25): 2702-2713, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34407544

RESUMEN

Multiple organ dysfunction is the most severe outcome of sepsis progression and is highly correlated with a worse prognosis. Excessive neutrophil extracellular traps (NETs) are critical players in the development of organ failure during sepsis. Therefore, interventions targeting NET release would likely effectively prevent NET-based organ injury associated with this disease. Herein, we demonstrate that the pore-forming protein gasdermin D (GSDMD) is active in neutrophils from septic humans and mice and plays a crucial role in NET release. Inhibition of GSDMD with disulfiram or genic deletion abrogated NET formation, reducing multiple organ dysfunction and sepsis lethality. Mechanistically, we demonstrate that during sepsis, activation of the caspase-11/GSDMD pathway controls NET release by neutrophils during sepsis. In summary, our findings uncover a novel therapeutic use for disulfiram and suggest that GSDMD is a therapeutic target to improve sepsis treatment.


Asunto(s)
Trampas Extracelulares/genética , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Insuficiencia Multiorgánica/genética , Proteínas de Unión a Fosfato/genética , Sepsis/genética , Inhibidores del Acetaldehído Deshidrogenasa/uso terapéutico , Traslado Adoptivo , Anciano , Animales , Células Cultivadas , Disulfiram/uso terapéutico , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Insuficiencia Multiorgánica/patología , Insuficiencia Multiorgánica/terapia , Proteínas de Unión a Fosfato/antagonistas & inhibidores , Sepsis/patología , Sepsis/terapia
16.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443169

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by joint destruction and severe morbidity. Cigarette smoking (CS) can exacerbate the incidence and severity of RA. Although Th17 cells and the Aryl hydrocarbon receptor (AhR) have been implicated, the mechanism by which CS induces RA development remains unclear. Here, using transcriptomic analysis, we show that microRNA-132 is specifically induced in Th17 cells in the presence of either AhR agonist or CS-enriched medium. miRNA-132 thus induced is packaged into extracellular vesicles produced by Th17 and acts as a proinflammatory mediator increasing osteoclastogenesis through the down-regulation of COX2. In vivo, articular knockdown of miR-132 in murine arthritis models reduces the number of osteoclasts in the joints. Clinically, RA patients express higher levels of miR-132 than do healthy individuals. This increase is further elevated by cigarette smoking. Together, these results reveal a hitherto unrecognized mechanism by which CS could exacerbate RA and further advance understanding of the impact of environmental factors on the pathogenesis of chronic inflammatory diseases.


Asunto(s)
Artritis Reumatoide/genética , MicroARNs/genética , Osteogénesis/fisiología , Adulto , Anciano , Animales , Artritis Experimental/patología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fumar Cigarrillos/efectos adversos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Persona de Mediana Edad , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Humo , Células Th17/efectos de los fármacos , Células Th17/metabolismo , Contaminación por Humo de Tabaco/efectos adversos
17.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231615

RESUMEN

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Asunto(s)
COVID-19/patología , COVID-19/virología , Inflamasomas/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Apoptosis , Comorbilidad , Citocinas/biosíntesis , Humanos , Pulmón/patología , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cambios Post Mortem , Resultado del Tratamiento
18.
J Leukoc Biol ; 109(6): 1063-1070, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33020963

RESUMEN

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Inflammatory monocytes are recruited to both the infection site and vital organs during sepsis; however, the mechanisms that orchestrate their migration, as well as the participation of these cells in systemic inflammation and vital organ damage, are still not fully elucidated. In this context, we described that CCR2-deficient mice had diminished migration of inflammatory monocytes from bone marrow to the circulation and subsequently to the site of infection and vital organs during cecal ligation and puncture (CLP)-induced polymicrobial sepsis. The reduction in the migration of inflammatory monocytes to the infection site was accompanied by a significant increase in the number of neutrophils in the same compartment, which seemed to counterbalance the absence of inflammatory monocytes in controlling microbial growth. Indeed, wild-type (WT) and CCR2-deficient mice under CLP presented similar control of infection. However, the CCR2-deficient mice were more resistant to sepsis, which was associated with a decrease in inflammatory mediators and organ damage biomarkers. Furthermore, the systemic adoptive transfer of CCR2-WT or CCR2-deficient inflammatory monocytes into CCR2-deficient mice equally increased the susceptibility to sepsis, demonstrating the deleterious role of these cells in the periphery even when CCR2 is absent. Thus, despite the host-protective role of inflammatory monocytes in controlling infection, our results demonstrated that the mechanism by which CCR2 deficiency shows protection to CLP-induced sepsis is due to a decrease of inflammatory monocytes emigration from bone marrow to the circulation and vital organs, resulting in the reduction of organ damage and systemic cytokine production.


Asunto(s)
Médula Ósea/inmunología , Quimiotaxis de Leucocito/genética , Quimiotaxis de Leucocito/inmunología , Monocitos/inmunología , Monocitos/metabolismo , Receptores CCR2/deficiencia , Sepsis/etiología , Sepsis/metabolismo , Animales , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados
19.
J Exp Med ; 217(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32926098

RESUMEN

Severe COVID-19 patients develop acute respiratory distress syndrome that may progress to cytokine storm syndrome, organ dysfunction, and death. Considering that neutrophil extracellular traps (NETs) have been described as important mediators of tissue damage in inflammatory diseases, we investigated whether NETs would be involved in COVID-19 pathophysiology. A cohort of 32 hospitalized patients with a confirmed diagnosis of COVID-19 and healthy controls were enrolled. The concentration of NETs was augmented in plasma, tracheal aspirate, and lung autopsies tissues from COVID-19 patients, and their neutrophils released higher levels of NETs. Notably, we found that viable SARS-CoV-2 can directly induce the release of NETs by healthy neutrophils. Mechanistically, NETs triggered by SARS-CoV-2 depend on angiotensin-converting enzyme 2, serine protease, virus replication, and PAD-4. Finally, NETs released by SARS-CoV-2-activated neutrophils promote lung epithelial cell death in vitro. These results unravel a possible detrimental role of NETs in the pathophysiology of COVID-19. Therefore, the inhibition of NETs represents a potential therapeutic target for COVID-19.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Trampas Extracelulares/fisiología , Neumonía Viral/inmunología , Neumonía Viral/virología , Células A549 , Adulto , Enzima Convertidora de Angiotensina 2 , COVID-19 , Muerte Celular , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/patología , Células Epiteliales/patología , Células Epiteliales/virología , Femenino , Células HeLa , Humanos , Masculino , Activación Neutrófila , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/sangre , Neumonía Viral/patología , SARS-CoV-2 , Serina Proteasas/metabolismo , Succión , Tráquea/inmunología
20.
J Leukoc Biol ; 108(4): 1215-1223, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745297

RESUMEN

Macrophages are highly plastic cells, responding to diverse environmental stimuli to acquire different functional phenotypes. Signaling through MAPKs has been reported to regulate the differentiation of macrophages, but the role of ERK5 in IL-4-mediated M2 macrophage differentiation is still unclear. Here, we showed that the ERK5 signaling pathway plays a critical role in IL-4-induced M2 macrophage differentiation. Pharmacologic inhibition of MEK5, an upstream activator of ERK5, markedly reduced the expression of classical M2 markers, such as Arg-1, Ym-1, and Fizz-1, as well as the production of M2-related chemokines and cytokines, CCL22, CCL17, and IGF-1 in IL-4-stimulated macrophages. Moreover, pharmacologic inhibition of ERK5 also decreased the expression of several M2 markers induced by IL-4. In accordance, myeloid cell-specific Erk5 depletion (Erk5∆mye ), using LysMcre /Erk5f/f mice, confirmed the involvement of ERK5 in IL-4-induced M2 polarization. Mechanistically, the inhibition of ERK5 did not affect STAT3 or STAT6 phosphorylation, suggesting that ERK5 signaling regulates M2 differentiation in a STAT3 and STAT6-independent manner. However, genetic deficiency or pharmacologic inhibition of the MEK5/ERK5 pathway reduced the expression of c-Myc in IL-4-activated macrophages, which is a critical transcription factor involved in M2 differentiation. Our study thus suggests that the MEK5/ERK5 signaling pathway is crucial in IL-4-induced M2 macrophage differentiation through the induction of c-Myc expression.


Asunto(s)
Diferenciación Celular/inmunología , Interleucina-4/inmunología , MAP Quinasa Quinasa 5/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Macrófagos/inmunología , Proteína Quinasa 7 Activada por Mitógenos/inmunología , Proteínas Proto-Oncogénicas c-myc/inmunología , Animales , Antígenos de Diferenciación/genética , Antígenos de Diferenciación/inmunología , Diferenciación Celular/genética , Regulación de la Expresión Génica/inmunología , Interleucina-4/genética , MAP Quinasa Quinasa 5/genética , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Proteína Quinasa 7 Activada por Mitógenos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...