Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838227

RESUMEN

Glycoprotein (GP)VI plays a key role in collagen-induced platelet aggregation. Affimers are engineered binding protein alternatives to antibodies. We screened and characterized GPVI-binding Affimers as novel tools to probe GPVI function. Among the positive clones, M17, D22 and D18 bound GPVI with the highest affinities (KD in the nM range). These Affimers inhibited GPVI-CRP-XL/collagen interactions, CRP-XL/collagen induced platelet aggregation and D22 also inhibited in vitro thrombus formation on a collagen surface under flow. D18 bound GPVI dimer but not monomer. GPVI binding was increased for D18 but not M17/D22 upon platelet activation by CRP-XL and ADP. D22 but not M17/D18 displaced nanobody2 (Nb2) binding to GPVI, indicating similar epitopes for D22 with Nb2 but not for M17/D18. Mapping of binding sites revealed that D22 binds a site that overlaps with Nb2 on the D1-domain, while M17 targets a site on the D2-domain, overlapping in part with the glenzocimab binding site, a humanized GPVI antibody Fab-fragment. D18 targets a new region on the D2-domain. We found that D18 is a stable non-covalent dimer and forms a stable complex with dimeric GPVI with 1:1 stoichiometry. Taken together, our data demonstrate that Affimers modulate GPVI-ligand interactions and bind different sites on GPVI D1/D2-domains. D18 is dimer-specific and could be used as a tool to detect GPVI dimerization or clustering in platelets. A dimeric epitope regulating ligand binding was identified on the GPVI D2-domain, which could be used for the development of novel bivalent antithrombotic agents selectively targeting GPVI dimer on platelets.

2.
Res Pract Thromb Haemost ; 8(1): 102261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192728

RESUMEN

Background: Chronic inflammation is a cardiovascular risk factor, and interleukin-1ß (IL-1ß) is central to the inflammatory host response. Platelets contain the NLRP3 inflammasome and are able to translate IL-1ß messenger RNA (mRNA) and secrete mature IL-1ß upon activation. However, the role of a chronic inflammatory environment in platelet IL-1ß mRNA and protein content remains unclear. Objectives: The aim of the current study was to investigate intracellular platelet IL-1ß and IL-1ß mRNA in a chronic inflammatory state. Methods: Sixty-five patients with stable inflammation (ie, high-sensitivity C-reactive protein within predefined margins in 2 separate measurements) were stratified according to high-sensitivity C-reactive protein levels in low (0.0-0.9 mg/L), medium (1.0-2.9 mg/L), and high (3.0-9.9 mg/L) risk groups. Platelet reactivity as well as platelet IL-1ß protein synthesis were studied. Results: The highest risk group was characterized by a distinct cardiovascular risk profile and approximately 20% higher platelet counts. While platelet reactivity was not different, a reduction in intracellular platelet IL-1ß mRNA and IL-1ß protein levels was observed in the highest risk group and was linked to decreased platelet size and granularity. This signature suggests a phenotype of chronic IL-1ß secretion and could be experimentally phenocopied by stimulation of platelets from healthy volunteers with either TRAP-6 or collagen related peptide (CRP-XL). Conclusion: Our data suggest a phenotype of chronic IL-1ß secretion by platelets in patients with chronic sterile inflammation.

3.
Small ; 20(12): e2304881, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946631

RESUMEN

InP/ZnS quantum dots (QDs) have received a large focus in recent years as a safer alternative to heavy metal-based QDs. Given their intrinsic fluorescent imaging capabilities, these QDs can be potentially relevant for in vivo platelet imaging. The InP/ZnS QDs are synthesized and their biocompatibility investigated through the use of different phase transfer agents. Analysis of platelet function indicates that platelet-QD interaction can occur at all concentrations and for all QD permutations tested. However, as the QD concentration increases, platelet aggregation is induced by QDs alone independent of natural platelet agonists. This study helps to define a range of concentrations and coatings (thioglycolic acid and penicillamine) that are biocompatible with platelet function. With this information, the platelet-QD interaction can be identified using multiple methods. Fluorescent lifetime imaging microscopy (FLIM) and confocal studies have shown QDs localize on the surface of the platelet toward the center while showing evidence of energy transfer within the QD population. It is believed that these findings are an important stepping point for the development of fluorescent probes for platelet imaging.


Asunto(s)
Puntos Cuánticos , Ligandos
4.
Br J Pharmacol ; 181(1): 21-35, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530222

RESUMEN

BACKGROUND AND PURPOSE: Ticagrelor is labelled as a reversible, direct-acting platelet P2Y12 receptor (P2Y12 R) antagonist that is indicated clinically for the prevention of thrombotic events in patients with acute coronary syndrome (ACS). As with many antiplatelet drugs, ticagrelor therapy increases bleeding risk in patients, which may require platelet transfusion in emergency situations. The aim of this study was to further examine the reversibility of ticagrelor at the P2Y12 R. EXPERIMENTAL APPROACH: Studies were performed in human platelets, with P2Y12 R-stimulated GTPase activity and platelet aggregation assessed. Cell-based bioluminescence resonance energy transfer (BRET) assays were undertaken to assess G protein-subunit activation downstream of P2Y12 R activation. KEY RESULTS: Initial studies revealed that a range of P2Y12 R ligands, including ticagrelor, displayed inverse agonist activity at P2Y12 R. Only ticagrelor was resistant to washout and, in human platelet and cell-based assays, washing failed to reverse ticagrelor-dependent inhibition of ADP-stimulated P2Y12 R function. The P2Y12 R agonist 2MeSADP, which was also resistant to washout, was able to effectively compete with ticagrelor. In silico docking revealed that ticagrelor and 2MeSADP penetrated more deeply into the orthosteric binding pocket of the P2Y12 R than other P2Y12 R ligands. CONCLUSION AND IMPLICATIONS: Ticagrelor binding to P2Y12 R is prolonged and more akin to that of an irreversible antagonist, especially versus the endogenous P2Y12 R agonist ADP. This study highlights the potential clinical need for novel ticagrelor reversal strategies in patients with spontaneous major bleeding, and for bleeding associated with urgent invasive procedures.


Asunto(s)
Síndrome Coronario Agudo , Difosfatos , Humanos , Ticagrelor/farmacología , Ticagrelor/metabolismo , Ticagrelor/uso terapéutico , Difosfatos/metabolismo , Difosfatos/farmacología , Difosfatos/uso terapéutico , Adenosina/farmacología , Agonismo Inverso de Drogas , Antagonistas del Receptor Purinérgico P2Y/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Adenosina Difosfato/farmacología , Adenosina Difosfato/metabolismo , Plaquetas , Síndrome Coronario Agudo/tratamiento farmacológico , Síndrome Coronario Agudo/complicaciones , Receptores Purinérgicos P2Y12/metabolismo
5.
Res Pract Thromb Haemost ; 7(7): 102205, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37854456

RESUMEN

Background: Flow cytometry is an important technique for understanding multiple aspects of blood platelet biology. Despite the widespread use of the platform for assessing platelet function, the optimization and careful consideration of preanalytical conditions, sample processing techniques, and data analysis strategies should be regularly assessed. When set up and designed with optimal conditions, it can ensure the acquisition of robust and reproducible flow cytometry data. However, these parameters are rarely described despite their importance. Objectives: We aimed to characterize the effects of several preanalytical variables on the analysis of blood platelets by multiparameter fluorescent flow cytometry. Methods: We assessed anticoagulant choice, sample material, sample processing, and storage times on 4 distinct and commonly used markers of platelet activation, including fibrinogen binding, expression of CD62P and CD42b, and phosphatidylserine exposure. Results: The use of suboptimal conditions led to increases in basal platelet activity and reduced sensitivities to stimulation; however, the use of optimal conditions protected the platelets from artifactual stimulation and preserved basal activity and sensitivity to activation. Conclusion: The optimal preanalytical conditions identified here for the measurement of platelet phenotype by flow cytometry suggest a framework for future development of multiparameter platelet assays for high-quality data sets and advanced analysis.

6.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012465

RESUMEN

Dyslipidaemia leads to proatherogenic oxidative lipid stress that promotes vascular inflammation and thrombosis, the pathologies that underpin myocardial infarction, stroke, and deep vein thrombosis. These prothrombotic states are driven, at least in part, by platelet hyperactivity, and they are concurrent with the appearancxe of oxidatively modified low-density lipoproteins (LDL) in the circulation. Modified LDL are heterogenous in nature but, in a general sense, constitute a prototype circulating transporter for a plethora of oxidised lipid epitopes that act as danger-associated molecular patterns. It is well-established that oxidatively modified LDL promote platelet activation and arterial thrombosis through a number of constitutively expressed scavenger receptors, which transduce atherogenic lipid stress to a complex array of proactivatory signalling pathways in the platelets. Stimulation of these signalling events underlie the ability of modified LDL to induce platelet activation and blunt platelet inhibitory pathways, as well as promote platelet-mediated coagulation. Accumulating evidence from patients at risk of arterial thrombosis and experimental animal models of disease suggest that oxidised LDL represents a tangible link between the dyslipidaemic environment and increased platelet activation. The aim of this review is to summarise recent advances in our understanding of the pro-thrombotic signalling events induced in platelets by modified LDL ligation, describe the contribution of individual platelet scavenger receptors, and highlight potential future challenges of targeting these pathways.


Asunto(s)
Dislipidemias , Trombosis , Animales , Coagulación Sanguínea , Plaquetas/metabolismo , Dislipidemias/metabolismo , Lipoproteínas LDL/metabolismo , Activación Plaquetaria , Trombosis/metabolismo
7.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35563363

RESUMEN

Cardiovascular complications remain the leading cause of morbidity and mortality in individuals with diabetes, driven by interlinked metabolic, inflammatory, and thrombotic changes. Hyperglycaemia, insulin resistance/deficiency, dyslipidaemia, and associated oxidative stress have been linked to abnormal platelet function leading to hyperactivity, and thus increasing vascular thrombotic risk. However, emerging evidence suggests platelets also contribute to low-grade inflammation and additionally possess the ability to interact with circulating immune cells, further driving vascular thrombo-inflammatory pathways. This narrative review highlights the role of platelets in inflammatory and immune processes beyond typical thrombotic effects and the impact these mechanisms have on cardiovascular disease in diabetes. We discuss pathways for platelet-induced inflammation and how platelet reprogramming in diabetes contributes to the high cardiovascular risk that characterises this population. Fully understanding the mechanistic pathways for platelet-induced vascular pathology will allow for the development of more effective management strategies that deal with the causes rather than the consequences of platelet function abnormalities in diabetes.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas , Diabetes Mellitus , Trombosis , Trastornos de las Plaquetas Sanguíneas/metabolismo , Plaquetas/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Inflamación/metabolismo , Trombosis/metabolismo
8.
ACS Med Chem Lett ; 13(2): 171-181, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178172

RESUMEN

The GPVI platelet receptor was recently validated as a safe antiplatelet target for the treatment of thrombosis using several peptidic modulators. In contrast, few weakly potent small-molecule GPVI antagonists have been reported. Those that have been published often lack evidence for target engagement, and their biological efficacy cannot be compared because of the natural donor variability associated with the assays implemented. Herein, we present the first side-by-side assessment of the reported GPVI small-molecule modulators. We have characterized their functional activities on platelet activation and aggregation using flow cytometry as well as light transmission and electrical impedance aggregometry. We also utilized microscale thermophoresis (MST) and saturation transfer difference (STD) NMR to validate GPVI binding and have used this along with molecular modeling to suggest potential binding interactions. We conclude that of the compounds examined, losartan and compound 5 are currently the most viable GPVI modulators.

9.
Cardiovasc Diabetol ; 20(1): 238, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34920734

RESUMEN

BACKGROUND: The enhanced thrombotic milieu in diabetes contributes to increased risk of vascular events. Aspirin, a key antiplatelet agent, has inconsistent effects on outcomes in diabetes and the best dosing regimen remains unclear. This work investigated effects of aspirin dose and interaction with glycaemia on both the cellular and protein components of thrombosis. METHODS: A total of 48 participants with type 1 diabetes and 48 healthy controls were randomised to receive aspirin 75 or 300 mg once-daily (OD) in an open-label crossover study. Light transmittance aggregometry and fibrin clot studies were performed before and at the end of each treatment period. RESULTS: Aspirin demonstrated reduced inhibition of collagen-induced platelet aggregation (PA) in participants with diabetes compared with controls, although the higher dose showed better efficacy. Higher aspirin dose facilitated clot lysis in controls but not individuals with diabetes. Collagen-induced PA correlated with glycaemic control, those in the top HbA1c tertile having a lesser inhibitory effect of aspirin. Threshold analysis suggested HbA1c levels of > 65 mmol/mol and > 70 mmol/mol were associated with poor aspirin response to 75 and 300 mg daily doses, respectively. Higher HbA1c was also associated with longer fibrin clot lysis time. CONCLUSIONS: Patients with diabetes respond differently to the antiplatelet and profibrinolytic effects of aspirin compared with controls. In particular, those with elevated HbA1c have reduced inhibition of PA with aspirin. Our findings indicate that reducing glucose levels improves the anti-thrombotic action of aspirin in diabetes, which may have future clinical implications. TRIAL REGISTRATION: EudraCT, 2008-007875-26, https://www.clinicaltrialsregister.eu/ctr-search/search?query=2008-007875-26 .


Asunto(s)
Aspirina/administración & dosificación , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Fibrinolíticos/administración & dosificación , Control Glucémico , Hipoglucemiantes/administración & dosificación , Insulina/uso terapéutico , Trombosis/prevención & control , Adolescente , Adulto , Aspirina/efectos adversos , Biomarcadores/sangre , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Estudios Cruzados , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/diagnóstico , Interacciones Farmacológicas , Inglaterra , Femenino , Fibrinólisis/efectos de los fármacos , Fibrinolíticos/efectos adversos , Hemoglobina Glucada/metabolismo , Control Glucémico/efectos adversos , Humanos , Hipoglucemiantes/efectos adversos , Insulina/efectos adversos , Masculino , Agregación Plaquetaria/efectos de los fármacos , Trombosis/sangre , Trombosis/diagnóstico , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
10.
Elife ; 102021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34633287

RESUMEN

Fibrinogen is essential for blood coagulation. The C-terminus of the fibrinogen α-chain (αC-region) is composed of an αC-domain and αC-connector. Two recombinant fibrinogen variants (α390 and α220) were produced to investigate the role of subregions in modulating clot stability and resistance to lysis. The α390 variant, truncated before the αC-domain, produced clots with a denser structure and thinner fibres. In contrast, the α220 variant, truncated at the start of the αC-connector, produced clots that were porous with short, stunted fibres and visible fibre ends. These clots were mechanically weak and susceptible to lysis. Our data demonstrate differential effects for the αC-subregions in fibrin polymerisation, clot mechanical strength, and fibrinolytic susceptibility. Furthermore, we demonstrate that the αC-subregions are key for promoting longitudinal fibre growth. Together, these findings highlight critical functions of the αC-subregions in relation to clot structure and stability, with future implications for development of novel therapeutics for thrombosis.


Asunto(s)
Coagulación Sanguínea/fisiología , Fibrinógeno/química , Fibrinógeno/metabolismo , Fibrinólisis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Animales , Células CHO , Cricetulus , Fibrina/química , Humanos , Ratones Noqueados , Proteínas Recombinantes/química
11.
Pilot Feasibility Stud ; 7(1): 193, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715934

RESUMEN

BACKGROUND: Ergothioneine is a naturally occurring metabolite of histidine found in many foods and in high amounts in mushrooms. In vivo, ergothioneine acts as an antioxidant and is widely distributed in most mammalian tissues. While ergothioneine is sold as a dietary supplement for its antioxidant and anti-inflammatory properties, to date there are no published intervention trials examining its health benefits in humans. The aim of this work was to develop a study protocol for a pilot interventional trial that will establish the primary and secondary outcomes, and the power required, for a definitive randomised controlled trial to test the hypothesis that ergothioneine supplementation is beneficial for people with metabolic syndrome. METHODS: We have designed the ErgMS study as a single-centre, randomised, double-blind, placebo-controlled, 3-arm parallel, pilot intervention trial, which aims to supplement participants with either placebo, 5 or 30 mg/day ergothioneine for 12 weeks. Measurements of metabolic syndrome risk factors, serum markers of oxidative stress (lipid peroxidation), inflammation, blood platelet function and liver function will take place at baseline, and after 6 weeks and 12 weeks of supplementation. In addition, we will examine if there are any changes in the serum metabolome in response to ergothioneine supplementation. Linear regression and two-way ANOVA will be utilised to analyse the association between ergothioneine and measured variables. DISCUSSION: The ErgMS study will be the first study to address the question does ergothioneine supplementation have health benefits for people with metabolic syndrome. Study results will provide preliminary data as to which dose may improve inflammatory markers in adults with metabolic syndrome and will inform dose and primary outcome selection for a definitive randomised controlled trial. TRIAL REGISTRATION: ISRCTN, ISRCTN25890011 Registered February 10th, 2021.

13.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34183396

RESUMEN

The onset of venous thromboembolism, including pulmonary embolism, represents a significant health burden affecting more than 1 million people annually worldwide. Current treatment options are based on anticoagulation, which is suboptimal for preventing further embolic events. In order to develop better treatments for thromboembolism, we sought to understand the structural and mechanical properties of blood clots and how this influences embolism in vivo. We developed a murine model in which fibrin γ-chain cross-linking by activated Factor XIII is eliminated (FGG3X) and applied methods to study thromboembolism at whole-body and organ levels. We show that FGG3X mice have a normal phenotype, with overall coagulation parameters and platelet aggregation and function largely unaffected, except for total inhibition of fibrin γ-chain cross-linking. Elimination of fibrin γ-chain cross-linking resulted in thrombi with reduced strength that were prone to fragmentation. Analysis of embolism in vivo using Xtreme optical imaging and light sheet microscopy demonstrated that the elimination of fibrin γ-chain cross-linking resulted in increased embolization without affecting clot size or lysis. Our findings point to a central previously unrecognized role for fibrin γ-chain cross-linking in clot stability. They also indirectly indicate mechanistic targets for the prevention of thrombosis through selective modulation of fibrin α-chain but not γ-chain cross-linking by activated Factor XIII to reduce thrombus size and burden, while maintaining clot stability and preventing embolism.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Factor XIIIa/metabolismo , Fibrinógeno/metabolismo , Embolia Pulmonar/etiología , Embolia Pulmonar/patología , Vena Cava Inferior/patología , Trombosis de la Vena/complicaciones , Animales , Coagulación Sanguínea , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Imagen Óptica , Embolia Pulmonar/sangre , Trombosis de la Vena/sangre
14.
J Thromb Haemost ; 19(7): 1800-1812, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33834609

RESUMEN

BACKGROUND: Robust platelet activation leads to the generation of subpopulations characterized by differential expression of phosphatidylserine (PS). Prostacyclin (PGI2 ) modulates many aspects of platelet function, but its influence on platelet subpopulations is unknown. OBJECTIVES AND METHODS: We used fluorescent flow cytometry coupled to multidimensional fast Fourier transform-accelerated interpolation-based t-stochastic neighborhood embedding analysis to examine the influence of PGI2 on platelet subpopulations. RESULTS: Platelet activation (SFLLRN/CRP-XL) in whole blood revealed three platelet subpopulations with unique combinations of fibrinogen (fb) binding and PS exposure. These subsets, PSlo /fbhi (68%), PShi /fblo (23%), and PShi /fbhi (8%), all expressed CD62P and partially shed CD42b. PGI2 significantly reduced fibrinogen binding and prevented the majority of PS exposure, but did not significantly reduce CD62P, CD154, or CD63 leading to the generation of four novel subpopulations, CD62Phi /PSlo /fblo (64%), CD62Phi /PSlo /fbhi (22%), CD62Phi /PShi /fblo (3%), and CD62Plo /PSlo /fblo (12%). Mechanistically this was linked to PGI2 -mediated inhibition of mitochondrial depolarization upstream of PS exposure. Combining phosphoflow with surface staining, we showed that PGI2 -treated platelets were characterized by both elevated vasodilator-stimulated phosphoprotein phosphorylation and CD62P. The resistance to cyclic AMP signaling was also observed for CD154 and CD63 expression. Consistent with the functional role of CD62P, exposure of blood to PGI2 failed to prevent SFLLRN/CRP-XL-induced platelet-monocyte aggregation despite reducing markers of hemostatic function. CONCLUSION: The combination of multicolor flow cytometry assays with unbiased computational tools has identified novel platelet subpopulations that suggest differential regulation of platelet functions by PGI2 . Development of this approach with increased surface and intracellular markers will allow the identification of rare platelet subtypes and novel biomarkers.


Asunto(s)
Plaquetas , Epoprostenol , Citometría de Flujo , Humanos , Activación Plaquetaria , Agregación Plaquetaria
15.
Blood ; 137(5): 678-689, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538796

RESUMEN

Thrombospondin-1 (TSP-1) is released by platelets upon activation and can increase platelet activation, but its role in hemostasis in vivo is unclear. We show that TSP-1 is a critical mediator of hemostasis that promotes platelet activation by modulating inhibitory cyclic adenosine monophosphate (cAMP) signaling. Genetic deletion of TSP-1 did not affect platelet activation in vitro, but in vivo models of hemostasis and thrombosis showed that TSP-1-deficient mice had prolonged bleeding, defective thrombosis, and increased sensitivity to the prostacyclin mimetic iloprost. Adoptive transfer of wild-type (WT) but not TSP-1-/- platelets ameliorated the thrombotic phenotype, suggesting a key role for platelet-derived TSP-1. In functional assays, TSP-1-deficient platelets showed an increased sensitivity to cAMP signaling, inhibition of platelet aggregation, and arrest under flow by prostacyclin (PGI2). Plasma swap experiments showed that plasma TSP-1 did not correct PGI2 hypersensitivity in TSP-1-/- platelets. By contrast, incubation of TSP-1-/- platelets with releasates from WT platelets or purified TSP-1, but not releasates from TSP-1-/- platelets, reduced the inhibitory effects of PGI2. Activation of WT platelets resulted in diminished cAMP accumulation and downstream signaling, which was associated with increased activity of the cAMP hydrolyzing enzyme phosphodiesterase 3A (PDE3A). PDE3A activity and cAMP accumulation were unaffected in platelets from TSP-1-/- mice. Platelets deficient in CD36, a TSP-1 receptor, showed increased sensitivity to PGI2/cAMP signaling and diminished PDE3A activity, which was unaffected by platelet-derived or purified TSP-1. This scenario suggests that the release of TSP-1 regulates hemostasis in vivo through modulation of platelet cAMP signaling at sites of vascular injury.


Asunto(s)
Plaquetas/fisiología , AMP Cíclico/fisiología , Trastornos Hemorrágicos/genética , Hemostasis/fisiología , Trombospondina 1/fisiología , Animales , Tiempo de Sangría , Plaquetas/efectos de los fármacos , Antígenos CD36/deficiencia , Antígenos CD36/fisiología , Células Cultivadas , Cloruros/toxicidad , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Gránulos Citoplasmáticos/metabolismo , Epoprostenol/fisiología , Compuestos Férricos/toxicidad , Humanos , Iloprost/farmacología , Ratones , Ratones Endogámicos C57BL , Transfusión de Plaquetas , Sistemas de Mensajero Secundario/fisiología , Trombosis/inducido químicamente , Trombosis/prevención & control , Trombospondina 1/deficiencia , Trombospondina 1/farmacología
16.
Int J Mol Sci ; 21(1)2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31948107

RESUMEN

Remodeling of the actin cytoskeleton is one of the critical events that allows platelets to undergo morphological and functional changes in response to receptor-mediated signaling cascades. Coronins are a family of evolutionarily conserved proteins implicated in the regulation of the actin cytoskeleton, represented by the abundant coronins 1, 2, and 3 and the less abundant coronin 7 in platelets, but their functions in these cells are poorly understood. A recent report revealed impaired agonist-induced actin polymerization and cofilin phosphoregulation and altered thrombus formation in vivo as salient phenotypes in the absence of an overt hemostasis defect in vivo in a knockout mouse model of coronin 1. Here we show that the absence of coronin 1 is associated with impaired translocation of integrin ß2 to the platelet surface upon stimulation with thrombin while morphological and functional alterations, including defects in Arp2/3 complex localization and cAMP-dependent signaling, are absent. Our results suggest a large extent of functional overlap among coronins 1, 2, and 3 in platelets, while aspects like integrin ß2 translocation are specifically or predominantly dependent on coronin 1.


Asunto(s)
Plaquetas/metabolismo , Cadenas beta de Integrinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Colágeno/farmacología , AMP Cíclico/metabolismo , Epoprostenol/farmacología , Integrina alfa2/genética , Integrina alfa2/metabolismo , Cadenas beta de Integrinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Glicoproteína IIb de Membrana Plaquetaria/genética , Glicoproteína IIb de Membrana Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/genética , Unión Proteica , Transporte de Proteínas , Trombina/farmacología
17.
Cytometry B Clin Cytom ; 98(1): 19-27, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30779477

RESUMEN

Platelet flow cytometry is widely used in cardiovascular medicine as the platelet surface is rich in clinical biomarkers. Surface profiling is critical in disease management, but current assays can abet clinical errors as they are suboptimal and prone to bias. Accordingly, the technical and analytical advances that can be used to create high quality assays with minimal error and maximal sensitivity were reviewed. Specifically, the best practices for instrument setup, quality control, panel design, titration, gating, and compensation were described. Adherence to these practices will enhance the validity and reliability of platelet flow cytometry in clinical/research settings. © 2019 International Clinical Cytometry Society.


Asunto(s)
Plaquetas/citología , Citometría de Flujo/instrumentación , Citometría de Flujo/métodos , Animales , Biomarcadores/metabolismo , Plaquetas/metabolismo , Humanos , Control de Calidad , Reproducibilidad de los Resultados
18.
Cytometry B Clin Cytom ; 98(2): 123-130, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31675177

RESUMEN

Platelet function is regulated by finely tuned phosphoprotein signals. Subtle aberrations in signaling can cause platelet hyperactivity and severe cardiovascular events. Mapping phosphorylation profiles in health and disease could accelerate antiplatelet discovery and enhance cardiovascular management, but traditional assays are ill-suited to clinical application as they are laborious and low throughput. Recent advances in multiplex flow cytometry (barcoding) allow the rapid acquisition of highly batched samples with standard laboratory equipment. However, many assays have not been standardized, and success is largely dependent on protocol/reagent selection. Accordingly, we review the technical steps that are key to success with an emphasis on fixation, permeabilization, staining, controls, and data visualization.


Asunto(s)
Plaquetas/metabolismo , Citometría de Flujo/métodos , Fosfoproteínas/metabolismo , Plaquetas/química , Plaquetas/citología , Citometría de Flujo/normas , Metaboloma , Metabolómica/métodos , Metabolómica/normas , Fosfoproteínas/análisis , Fosforilación/fisiología , Fosfotransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Proteómica/normas , Control de Calidad , Coloración y Etiquetado/métodos , Coloración y Etiquetado/normas
19.
Haematologica ; 105(3): 808-819, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31289200

RESUMEN

Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signaling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidized low density lipoproteins (oxLDL) associated with dyslipidemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signaling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a phosphodiesterase (PDE)-insensitive cAMP analog, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of PDE3A, leading to diminished cAMP signaling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signaling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidized phospholipids and ablated in CD36-/- murine platelets. The injection of oxLDL into wild-type mice strongly promoted FeCl3-induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2 ex vivo and diminished PKA signaling. In contrast, platelet sensitivity to a PDE-resistant cAMP analog remained normal. Genetic deletion of CD36 protected dyslipidemic animals from PGI2 hyposensitivity and restored PKA signaling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signaling.


Asunto(s)
Plaquetas , Epoprostenol , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Humanos , Lípidos , Ratones , Activación Plaquetaria , Agregación Plaquetaria
20.
Platelets ; 31(7): 913-924, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31801396

RESUMEN

Rapid reorganization of the actin cytoskeleton in response to receptor-mediated signaling cascades allows platelets to transition from a discoid shape to a flat spread shape upon adhesion to damaged vessel walls. Coronins are conserved regulators of the actin cytoskeleton turnover but they also participate in signaling events. To gain a better picture of their functions in platelets we have undertaken a biochemical and immunocytochemical investigation with a focus on Coro1. We found that class I coronins Coro1, 2 and 3 are abundant in human and mouse platelets whereas little Coro7 can be detected. Coro1 is mainly cytosolic, but a significant amount associates with membranes in an actin-independent manner and does not translocate from or to the membrane fraction upon exposure to thrombin, collagen or prostacyclin. Coro1 rapidly translocates to the Triton insoluble cytoskeleton upon platelet stimulation with thrombin or collagen. Coro1, 2 and 3 show a diffuse cytoplasmic localization with discontinuous accumulation at the cell cortex and actin nodules of human platelets, where all three coronins colocalize. Our data are consistent with a role of coronins as integrators of extracellular signals with actin remodeling and suggests a high extent of functional overlap among class I coronins in platelets.


Asunto(s)
4-Butirolactona/análogos & derivados , Plaquetas/metabolismo , Inmunohistoquímica/métodos , 4-Butirolactona/metabolismo , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...