Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 12(1): 2053, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136125

RESUMEN

Primary graft dysfunction (PGD) is a major determinant of morbidity and mortality following lung transplantation. Delineating basic mechanisms and molecular signatures of PGD remain a fundamental challenge. This pilot study examines if the pulmonary volatile organic compound (VOC) spectrum relate to PGD and postoperative outcomes. The VOC profiles of 58 bronchoalveolar lavage fluid (BALF) and blind bronchial aspirate samples from 35 transplant patients were extracted using solid-phase-microextraction and analyzed with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. The support vector machine algorithm was used to identify VOCs that could differentiate patients with severe from lower grade PGD. Using 20 statistically significant VOCs from the sample headspace collected immediately after transplantation (< 6 h), severe PGD was differentiable from low PGD with an AUROC of 0.90 and an accuracy of 0.83 on test set samples. The model was somewhat effective for later time points with an AUROC of 0.80. Three major chemical classes in the model were dominated by alkylated hydrocarbons, linear hydrocarbons, and aldehydes in severe PGD samples. These VOCs may have important clinical and mechanistic implications, therefore large-scale study and potential translation to breath analysis is recommended.


Asunto(s)
Líquido del Lavado Bronquioalveolar/química , Lesión Pulmonar/diagnóstico , Trasplante de Pulmón/efectos adversos , Disfunción Primaria del Injerto/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Adulto , Pruebas Respiratorias , Broncoscopía , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Trasplante de Pulmón/métodos , Trasplante de Pulmón/mortalidad , Masculino , Metabolómica , Persona de Mediana Edad , Proyectos Piloto , Microextracción en Fase Sólida , Máquina de Vectores de Soporte
2.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361751

RESUMEN

Species of Mycobacteriaceae cause disease in animals and humans, including tuberculosis and leprosy. Individuals infected with organisms in the Mycobacterium tuberculosis complex (MTBC) or non-tuberculous mycobacteria (NTM) may present identical symptoms, however the treatment for each can be different. Although the NTM infection is considered less vital due to the chronicity of the disease and the infrequency of occurrence in healthy populations, diagnosis and differentiation among Mycobacterium species currently require culture isolation, which can take several weeks. The use of volatile organic compounds (VOCs) is a promising approach for species identification and in recent years has shown promise for use in the rapid analysis of both in vitro cultures as well as ex vivo diagnosis using breath or sputum. The aim of this contribution is to analyze VOCs in the culture headspace of seven different species of mycobacteria and to define the volatilome profiles that are discriminant for each species. For the pre-concentration of VOCs, solid-phase micro-extraction (SPME) was employed and samples were subsequently analyzed using gas chromatography-quadrupole mass spectrometry (GC-qMS). A machine learning approach was applied for the selection of the 13 discriminatory features, which might represent clinically translatable bacterial biomarkers.


Asunto(s)
Metaboloma , Mycobacterium abscessus/química , Complejo Mycobacterium avium/química , Mycobacterium avium/química , Mycobacterium bovis/química , Mycobacterium/química , Compuestos Orgánicos Volátiles/aislamiento & purificación , Biomarcadores/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Aprendizaje Automático/estadística & datos numéricos , Mycobacterium/metabolismo , Mycobacterium abscessus/metabolismo , Mycobacterium avium/metabolismo , Complejo Mycobacterium avium/metabolismo , Mycobacterium bovis/metabolismo , Análisis de Componente Principal , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/clasificación , Compuestos Orgánicos Volátiles/metabolismo
3.
Metabolomics ; 15(1): 10, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30830447

RESUMEN

INTRODUCTION: The measurement of specific volatile organic compounds in breath has been proposed as a potential diagnostic for a variety of diseases. The most well-studied bacterial lung infection in the breath field is that caused by Pseudomonas aeruginosa. OBJECTIVES: To determine a discriminatory core of molecules in the "breath-print" of mice during a lung infection with four strains of P. aeruginosa (PAO1, PA14, PAK, PA7). Furthermore, we attempted to extrapolate a strain-specific "breath-print" signature to investigate the possibility of recapitulating the genetic phylogenetic groups (Stewart et al. Pathog Dis 71(1), 20-25, 2014. https://doi.org/10.1111/2049-632X.12107 ). METHODS: Breath was collected into a Tedlar bag and shortly after drawn into a thermal desorption tube. The latter was then analyzed into a comprehensive multidimensional gas chromatography coupled with a time-of-flight mass spectrometer. Random forest algorithm was used for selecting the most discriminatory features and creating a prediction model. RESULTS: Three hundred and one molecules were significantly different between animals infected with P. aeruginosa, and those given a sham infection (PBS) or inoculated with UV-killed P. aeruginosa. Of those, nine metabolites could be used to discriminate between the three groups with an accuracy of 81%. Hierarchical clustering showed that the signature from breath was due to a specific response to live bacteria instead of a generic infection response. Furthermore, we identified ten additional volatile metabolites that could differentiate mice infected with different strains of P. aeruginosa. A phylogram generated from the ten metabolites showed that PAO1 and PA7 were the most distinct group, while PAK and PA14 were interspersed between the former two groups. CONCLUSIONS: To the best of our knowledge, this is the first study to report on a 'core' murine breath print, as well as, strain level differences between the compounds in breath. We provide identifications (by running commercially available analytical standards) to five breath compounds that are predictive of P. aeruginosa infection.


Asunto(s)
Pruebas Respiratorias/métodos , Metabolómica/métodos , Compuestos Orgánicos Volátiles/análisis , Animales , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas/métodos , Metaboloma/fisiología , Ratones , Ratones Endogámicos C57BL , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/metabolismo
4.
J Breath Res ; 13(1): 016005, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30394364

RESUMEN

Tuberculosis (TB) is the deadliest infectious disease, and yet accurate diagnostics for the disease are unavailable for many subpopulations. In this study, we investigate the possibility of using human breath for the diagnosis of active TB among TB suspect patients, considering also several risk factors for TB for smokers and those with human immunodeficiency virus (HIV). The analysis of exhaled breath, as an alternative to sputum-dependent tests, has the potential to provide a simple, fast, non-invasive, and readily available diagnostic service that could positively change TB detection. A total of 50 individuals from a clinic in South Africa were included in this pilot study. Human breath has been investigated in the setting of active TB using the thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry methodology and chemometric techniques. From the entire spectrum of volatile metabolites in breath, three machine learning algorithms (support vector machines, partial least squares discriminant analysis, and random forest) to select discriminatory volatile molecules that could potentially be useful for active TB diagnosis were employed. Random forest showed the best overall performance, with sensitivities of 0.82 and 1.00 and specificities of 0.92 and 0.60 in the training and test data respectively. Unsupervised analysis of the compounds implicated by these algorithms suggests that they provide important information to cluster active TB from other patients. These results suggest that developing a non-invasive diagnostic for active TB using patient breath is a potentially rich avenue of research, including among patients with HIV comorbidities.


Asunto(s)
Pruebas Respiratorias/métodos , Espiración , Cromatografía de Gases y Espectrometría de Masas/métodos , Tuberculosis Pulmonar/diagnóstico , Adulto , Análisis Discriminante , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Aprendizaje Automático , Masculino , Proyectos Piloto , Análisis de Componente Principal , Curva ROC , Sensibilidad y Especificidad , Máquina de Vectores de Soporte , Tuberculosis/diagnóstico
5.
Anal Bioanal Chem ; 410(30): 7987-7996, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30370475

RESUMEN

Gas chromatography (GC) coupled with electron ionization (EI) mass spectrometry (MS) is a well-established technique for the analysis of volatile and semi-volatile compounds. The main advantage is the highly repeatable fragmentation of the compounds into the ion source, generating intense and diagnostic fragmentation when the ionization is performed at 70 eV; this is considered the standard ionization condition and has been used for creating many established databases, which are of great support in the analyte identification process. However, such an intense fragmentation often causes the loss of the molecular ion or more diagnostic ions, which can be detrimental for the identification of homologous series or isomers, as for instance fatty acids. To obtain this information chemical or soft ionization can be used, but dedicated ion sources and conditions are required. In this work, we explored different ionization voltages in GC-EI-MS to preserve the intensity of the molecular ion using a conventional quadrupole MS. Twenty, 30, 50, and 70 eV were tested using a mixture of fatty acid methyl esters standards. Intensity and repeatability of the most informative ions were compared. Twenty and 70 eV were then used to analyze the fatty acid composition of six different strains of mycobacteria. Two approaches were used for elaborating the data: (1) a single average spectrum of the entire chromatogram was derived, which can be considered (in terms of concept) as a direct EI-MS analysis; (2) the actual chromatographic separation of the compounds was considered after automatic alignment. The results obtained are discussed herein. Graphical abstract ᅟ.


Asunto(s)
Ácidos Grasos/análisis , Mycobacterium/química , Acetatos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Mycobacterium/clasificación , Concentración Osmolar , Reproducibilidad de los Resultados
6.
Sci Rep ; 8(1): 13297, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185884

RESUMEN

Infections caused by carbapenem-resistant Enterobacteriaceae (CRE) are alarming in the clinical setting, as CRE isolates often exhibit resistance to most clinically-available antibiotics. Klebsiella pneumoniae carbapenemase (KPC) is the most common carbapenemase carried by CRE in North America and Europe, frequently detected in isolates of K. pneumoniae, Escherichia coli, and Enterobacter cloacae. Notably, KPC-expressing strains often arise from clonal lineages, with sequence type 258 (ST258) representing the dominant lineage in K. pneumoniae, ST131 in E. coli, and ST78 and ST171 in E. cloacae. Prior studies have demonstrated that carbapenem-resistant K. pneumoniae differs from carbapenem-susceptible K. pneumoniae at both the transcriptomic and soluble metabolomic levels. In the present study, we sought to determine whether carbapenem-resistant and carbapenem-susceptible isolates of K. pneumoniae, E. coli, and E. cloacae produce distinct volatile metabolic profiles. We were able to identify a volatile metabolic fingerprint that could discriminate between CRE and non-CRE with an area under the receiver operating characteristic curve (AUROC) as high as 0.912. Species-specific AUROCs were as high as 0.988 for K. pneumoniae and 1.000 for E. cloacae. Paradoxically, curing of KPC-expressing plasmids from a subset of K. pneumoniae isolates further accentuated the metabolic differences observed between ST258 and non-ST258.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Enterobacter cloacae/genética , Klebsiella pneumoniae/genética , Antibacterianos/uso terapéutico , Área Bajo la Curva , Proteínas Bacterianas/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Carbapenémicos/farmacología , Enterobacter cloacae/aislamiento & purificación , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Escherichia coli/genética , Europa (Continente) , Genes Bacterianos , Genotipo , Humanos , Klebsiella pneumoniae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Epidemiología Molecular , América del Norte , Plásmidos , Curva ROC , beta-Lactamasas/farmacología
7.
J Breath Res ; 13(1): 016004, 2018 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29910196

RESUMEN

In this pilot study, volatile molecules produced by cultures of Mycobacterium tuberculosis were evaluated to determine whether they could be used to discriminate between uninfected and M. tuberculosis-infected macaques. Thirty seven of the culture biomarkers were detectable in macaque breath and were shown to discriminate between uninfected and infected animals with an area under the curve (AUC) of 87%. An AUC of 98% was achieved when using the top 38 discriminatory molecules detectable in breath. We report two newly discovered volatile biomarkers, not previously associated with M. tuberculosis, that were selected in both our in vitro and in vivo discriminatory biomarker suites: 4-(1,1-dimethylpropyl)phenol and 4-ethyl-2,2,6,6-tetramethylheptane. Additionally, we report the detection of heptanal, a previously identified M. tuberculosis breath biomarker in humans, as an in vitro culture biomarker that was detected in every macaque breath sample analyzed, though not part of the in vivo discriminatory suite. This pilot study suggests that molecules from the headspace of M. tuberculosis culture show potential to translate as breath biomarkers for macaques infected with the same strain.


Asunto(s)
Biomarcadores/análisis , Pruebas Respiratorias/métodos , Espiración , Mycobacterium tuberculosis/aislamiento & purificación , Compuestos Orgánicos Volátiles/análisis , Animales , Humanos , Macaca , Proyectos Piloto , Análisis de Componente Principal
8.
Sci Rep ; 8(1): 826, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29339749

RESUMEN

Respiratory infections caused by Pseudomonas aeruginosa and Staphylococcus aureus are the leading cause of morbidity and mortality in cystic fibrosis (CF) patients. The authors aimed to identify volatile biomarkers from bronchoalveolar lavage (BAL) samples that can guide breath biomarker development for pathogen identification. BAL samples (n = 154) from CF patients were analyzed using two-dimensional gas chromatography time-of-flight mass spectrometry. Random Forest was used to select suites of volatiles for identifying P. aeruginosa-positive and S. aureus-positive samples using multiple infection scenarios and validated using test sets. Using nine volatile molecules, we differentiated P. aeruginosa-positive (n = 7) from P. aeruginosa-negative (n = 53) samples with an area under the receiver operating characteristic curve (AUROC) of 0.86 (95% CI 0.71-1.00) and with positive and negative predictive values of 0.67 (95% CI 0.38-0.75) and 0.92 (95% CI 0.88-1.00), respectively. We were also able to discriminate S. aureus-positive (n = 15) from S. aureus-negative (n = 45) samples with an AUROC of 0.88 (95% CI 0.79-1.00) using eight volatiles and with positive and negative predictive values of 0.86 (95% CI 0.61-0.96) and 0.70 (95% CI 0.61-0.75), respectively. Prospective validation of identified biomarkers as screening tools in patient breath may lead to clinical application.


Asunto(s)
Líquido del Lavado Bronquioalveolar/química , Fibrosis Quística/patología , Cromatografía de Gases y Espectrometría de Masas/métodos , Infecciones del Sistema Respiratorio/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Adolescente , Adulto , Área Bajo la Curva , Biomarcadores/análisis , Niño , Preescolar , Fibrosis Quística/complicaciones , Femenino , Humanos , Masculino , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Curva ROC , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/microbiología , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo , Adulto Joven
9.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1074-1075: 46-50, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29331743

RESUMEN

Tuberculosis (TB) remains a global public health malady that claims almost 1.8 million lives annually. Diagnosis of TB represents perhaps one of the most challenging aspects of tuberculosis control. Gold standards for diagnosis of active TB (culture and nucleic acid amplification) are sputum-dependent, however, in up to a third of TB cases, an adequate biological sputum sample is not readily available. The analysis of exhaled breath, as an alternative to sputum-dependent tests, has the potential to provide a simple, fast, and non-invasive, and ready-available diagnostic service that could positively change TB detection. Human breath has been evaluated in the setting of active tuberculosis using thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry methodology. From the entire spectrum of volatile metabolites in breath, three random forest machine learning models were applied leading to the generation of a panel of 46 breath features. The twenty-two common features within each random forest model used were selected as a set that could distinguish subjects with confirmed pulmonary M. tuberculosis infection and people with other pathologies than TB.


Asunto(s)
Pruebas Respiratorias/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Aprendizaje Automático , Tuberculosis/diagnóstico , Compuestos Orgánicos Volátiles/análisis , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Compuestos Orgánicos Volátiles/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...