Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tissue Cell ; 89: 102462, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002289

RESUMEN

Successful treatment of diabetic wounds requires multifactorial approaches. Herein we investigated the effects of a bioengineered three-dimensional dermal derived matrix-scaffold (DMS) in combination with hyperbaric oxygen (HBO) in repairing of wound model in diabetic rats. Thirty days after induction of diabetes, a circular wound was created and treatments were performed for 21 days. Animals were randomly allocated into the untreated group, DMS group, HBO group, and DMS+HBO group. On days 7, 14, and 21, tissue samples were obtained for stereological, molecular, and tensiometrical assessments. Our results showed that the wound closure rate, volume of new dermis and epidermis, numerical density fibroblasts and blood vessels, collagen density, and biomechanical characterize were significantly higher in the treatment groups than in the untreated group, and these changes were more obvious in the DMS+HBO ones. Moreover, the expression of TGF-ß, bFGF, miRNA-21, miRNA-146a, and VEGF genes were meaningfully upregulated in treatment groups compared to the untreated group and were greater in the DMS+HBO group. This is while expression of TNF-α and IL-1ß, as well as the numerical density of neutrophil and macrophage decreased more considerably in the DMS+HBO group than in the other groups. Overall, using both DMS engraftment and HBO treatment has more effects on diabetic wound healing.


Asunto(s)
Diabetes Mellitus Experimental , Oxigenoterapia Hiperbárica , Andamios del Tejido , Cicatrización de Heridas , Animales , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/patología , Ratas , Andamios del Tejido/química , Masculino , Ratas Sprague-Dawley
2.
Clin Exp Reprod Med ; 51(1): 28-41, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38433013

RESUMEN

OBJECTIVE: Chronic scrotal hyperthermia (SHT) can lead to serious disorders of the male reproductive system, with oxidative stress playing a key role in the onset of these dysfunctions. Thus, we evaluated the impact of caffeine, a potent antioxidant, on cellular and tissue disorders in mice with chronic SHT. METHODS: In this experimental study, 56 adult male NMRI mice were allocated into seven equal groups. Apart from the non-treated control group, all were exposed to heat stress. Two groups, termed "preventive" and "curative," were orally administered caffeine. The preventive mice began receiving caffeine immediately prior to heat exposure, while for the curative group, a caffeine regimen was initiated 15 consecutive days following cessation of heat exposure. Each treated group was subdivided based on pairing with a positive control (Pre/curative [Cur]+PC) or a vehicle (Pre/Cur+vehicle). Upon conclusion of the study, we assessed sperm characteristics, testosterone levels, stereological parameters, apoptosis, antioxidant and oxidant levels, and molecular markers. RESULTS: Sperm parameters, testosterone levels, stereological parameters, biochemical factors (excluding malondialdehyde [MDA]), and c-kit gene expression were significantly elevated in the preventive and curative groups, especially the former, relative to the other groups. Conversely, expression levels of the heat shock protein 72 (HSP72) and nuclear factor kappa beta (NF-κß) genes, MDA levels, and apoptotic cell density were markedly lower in both caffeine-treated groups relative to the other groups, with more pronounced differences observed in the preventive group. CONCLUSION: Overall, caffeine attenuated cellular and molecular abnormalities induced by heat stress in the testis, particularly in the mice treated under the preventive condition.

3.
Tissue Cell ; 87: 102302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38219451

RESUMEN

Due to the multifactorial nature of diabetic wounds, the most effective treatments require combinatorial approach. Herein we investigated whether engraftment of a bioengineered three-dimensional dermal derived matrix scaffold (DDMS) in combination with adipose-derived stem cells (ADSs), could accelerate diabetic wound healing. Diabetic animals were randomly planned into the control group, DDMS group, ADS group, and DDMS+ADS group. On days 7, 14, and 21, tissue samples were obtained for stereological, molecular, and tensiometrical assessments. We found that the wound contraction rate, the total volumes of new epidermis and dermis, the numerical densities of fibroblasts and blood vessels, collagen density, and tensiometrical parameters were meaningfully greater in the treated groups than in the control group, and these changes were more obvious in the DDMS+ADS ones (p < 0.05). Moreover, the expression of TGF-ß, bFGF, and VEGF genes were considerably upregulated in treated groups compared to the control group and were greater in the DDMS+ADS group (p < 0.05). This is while expression of TNF-α and IL-1ß, as well as the numerical densities of neutrophils and macrophages decreased more considerably in the DDMS+ADS group than in the other groups (p < 0.05). Overall, it was found that using both DDMS engraftment and ADS transplantation has more impact on diabetic wound healing.


Asunto(s)
Amidas , Diabetes Mellitus Experimental , Sulfonas , Animales , Diabetes Mellitus Experimental/terapia , Cicatrización de Heridas , Colágeno , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA