Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 128(8): 1438-1456, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38359800

RESUMEN

We had calculated adiabatic potential energy surfaces (PESs), nonadiabatic, and spin-orbit (SO) coupling terms among the lowest three electronic states (12A', 22A', and 12A″) of the F + H2 system using the multireference configuration interaction (MRCI) level of theory, and the adiabatic-to-diabatic transformation equations were solved to formulate the diabatic Hamiltonian matrix [J. Chem. Phys. 2020, 153, 174301] for the entire region of the nuclear configuration space. The accuracy of such diabatic PESs is explored by performing scattering calculations to evaluate integral cross sections (ICSs) and rate constants. The nonadiabatic and SO effects are studied by utilizing coupled 3D time-dependent wave packet formalism with zero and nonzero total angular momentum on multiple adiabatic/diabatic surfaces calculation. We depict the convergence profiles of reaction probabilities for the reactive as well as nonreactive processes on various electronic states at different collision energies with respect to total angular momentum including all helicity quantum numbers. Finally, total ICSs are calculated as functions of collision energies for the initial rovibrational state (v = 0, j = 0) of the H2 molecule along with the temperature-dependent rate coefficient, where those quantities are compared with previous theoretical and experimental results.

2.
J Chem Phys ; 159(24)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153145

RESUMEN

While carrying out Beyond Born-Oppenheimer theory based diabatization, the solutions of adiabatic-to-diabatic transformation equations depend on the paths of integration over two-dimensional cross-sections of multi-dimensional space of nuclear degrees of freedom. It is shown that such path-dependent solutions leading to diabatic potential energy surface matrices computed along any two different paths are related through an orthogonal matrix, and thereby, those surface matrices should provide unique observables. While exploring the numerical validity of the theoretical framework, we construct diabatic Hamiltonians for the five low-lying electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of benzene radical cation (C6H6+) along three different approaches of contour integration over two dimensional nuclear planes constituted by seven non-adiabatically active normal modes. Three different diabatic surface matrices are further employed to generate the photoelectron spectra of the benzene molecule (C6H6). It is interesting to note that the spectral peak positions and intensity patterns for all three cases are almost close to each other and also exhibit very good agreement with the experimental results.

3.
Org Lett ; 25(46): 8199-8204, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37947779

RESUMEN

An unprecedented atom-economic redox neutral regioselective Rh(III)-catalyzed cascade [3+2] annulation of 2-aryl oxazoline with α,ß-unsaturated nitro olefins has been accomplished, furnishing a novel set of nitro-functionalized indene-tethered amino alcohols through a synergistic ring-closing/ring-opening strategy via the formation of two new C-C bonds and the regioselective cleavage of the C2-O bond of oxazoline under silver free mild reaction conditions with a broad substrate scope.

4.
Chem Commun (Camb) ; 59(93): 13899-13902, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37934663

RESUMEN

We describe a robust one-pot cascade method for the synthesis of indole-3-carboxylic acids using isatins and DMSO via a one-carbon translocation involving in situ generation of α,ß-unsaturated methylvinylsulfoxide followed by amide bond cleavage and ring closure. The methodology has been extended to afford anthranilic acid derivatives by tuning the reaction conditions in the presence of molecular oxygen. Importantly, easy access to commercially available drugs, including tropisetron, is demonstrated.

5.
J Chem Phys ; 159(3)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37458349

RESUMEN

We have carried out fully close-coupled three dimensional quantum mechanical wave packet dynamical calculations for the reaction He+H2+→HeH++H on the ground electronic adiabatic potential energy surface and on the lowest two electronic states of newly constructed ab initio calculated diabatic potential energy surfaces for the system [Naskar et al., J. Phys. Chem. A 127, 3832 (2023)]. With the reactant diatom (H2+) in its roto-vibrational ground state (v = 0, j = 0), the calculations have been carried out in hyperspherical coordinates to obtain the reaction attributes. Convergence profiles of the reaction probability with respect to the total angular momentum quantum number at different collision energies are presented for the title reaction. State-to-state as well as initial state selected integral reaction cross sections are calculated from the fully converged reaction probabilities over a range of collision energies. The integral cross section values computed using the two-state diabatic potential energy surfaces are significantly lower than those obtained using the ground electronic state adiabatic potential energy surface and are in much better agreement with the available experimental results than the latter for total energy greater than 1.1 eV. Therefore, it becomes clear that it is important to include the nonadiabatic coupling terms for a quantitative prediction of the dynamical observables.

6.
Chem Commun (Camb) ; 59(59): 9074-9077, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37345722

RESUMEN

A straightforward strategy for direct access of C9-functionalized N-alkyl-acridanes in good to excellent yields has been established via a metal- and external oxidant-free sustainable electrochemical C(sp3)-C(sp3) cross-dehydrogenative coupling reaction between acridanes and benzo fused lactones at ambient temperature. A broad substrate scope with superior functional-group tolerance via anodic oxidation of acridanes permitted the synthesis of a vast spectrum of fluorescence-active acridanes with high quantum yields.

7.
Chem Commun (Camb) ; 59(50): 7751-7754, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37129871

RESUMEN

We report an unprecedented atom-economic one-pot Cp*Rh(III)-catalyzed regioselective [3+2]-spiroannulation reaction between dibenz(ox)azepines and ynones, allowing the synthesis of biologically relevant novel spirocyclic dibenz(ox)azepines under operationally simple and mild reaction conditions. The reaction proceeds without any silver additive or external oxidant implementing a redox-neutral pathway. A broad substrate scope with diverse functional group tolerance permitted the regioselective synthesis of a wide spectrum of indene-containing spirocyclic dibenz(ox)azepines in good to excellent yields. Also, we showcased detailed mechanistic studies to justify the formation of spirocycles. In addition, the synthetic utility of this process was also demonstrated by the modular synthesis of various steroid conjugates.

8.
J Phys Chem A ; 127(17): 3832-3847, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37098130

RESUMEN

First-principles based beyond Born-Oppenheimer theory has been employed to construct multistate global Potential-Energy Surfaces (PESs) for the HeH2+ system by explicitly incorporating the Nonadiabatic Coupling Terms (NACTs). Adiabatic PESs and NACTs for the lowest four electronic states (12A', 22A', 32A' and 42A') are evaluated as functions of hyperangles for a grid of fixed values of the hyperradius in hyperspherical coordinates. Conical intersection between different states are validated by integrating the NACTs along appropriately chosen contours. Subsequently, adiabatic-to-diabatic (ADT) transformation angles are determined by solving the ADT equations to construct the diabatic potential matrix for the HeH2+ system which are smooth, single-valued, continuous, and symmetric and are suitable for performing accurate scattering calculations for the titled system.

9.
J Chem Phys ; 157(19): 194112, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414467

RESUMEN

The effect of surface mode vibrations on the reactive scattering of D2, initialized in the ground rovibrational state (v = 0, j = 0), from a Cu(111) surface is investigated for different surface temperature situations. We adopt a time and temperature dependent effective Hamiltonian [Dutta et al., J. Chem. Phys. 154, 104103 (2021)] constructed by combining the linearly coupled many oscillator model [Sahoo et al., J. Chem. Phys. 136, 084306 (2012)] and the static corrugation model [M. Wijzenbroek and M. F. Somers, J. Chem. Phys. 137, 054703 (2012)] potential within the mean-field approach. Such an effective Hamiltonian is employed for six-dimensional quantum dynamical calculations to obtain temperature dependent reaction and state-to-state scattering probability profiles as a function of incidence energy of colliding D2 molecules. As reported in the experimental studies, the movements of surface atoms modify the dissociative scattering dynamics at higher surface temperature by exhibiting vibrational quantum and surface atoms' recoil effects in the low and high collision energy domains, respectively. Finally, we compare our present theoretical results with the experimental and other theoretical outcomes, as well as discuss the novelty of our findings.

10.
J Org Chem ; 87(15): 9988-10002, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35830300

RESUMEN

We report an atom-economic Rh(III)-catalyzed [3 + 2]-spiroannulation reaction between cyclic ketimines and α,ß-unsaturated carbonyl compounds, allowing the synthesis of novel spirocycles with concomitant generation of three stereogenic centers in one pot. The reaction does not require any silver additives or external oxidants and is believed to proceed in a redox-neutral manner. A broad substrate scope with good functional group tolerance permitted the synthesis of a vast spectrum of spirocyclic 1,4-benzoxazine derivatives containing polysubstituted α-aroyl-indanamines in good to excellent yields with high diastereoselectivity.

11.
J Phys Chem A ; 126(21): 3311-3328, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35594416

RESUMEN

We employ coupled three-dimensional (3D) time dependent wave packet formalism in hyperspherical coordinates for reactive scattering problem on the newly constructed ab initio calculated ground adiabatic potential energy surface for the F + H2/D2 reaction. The convergence profiles for various reactive channels are depicted at low collision energy regimes with respect to the total angular momentum (J) quantum numbers. For two different reactant diatomic molecules (H2 and D2) initially at their respective ground roto-vibrational state (v = 0, j = 0), calculated state-to-state as well as total integral cross sections as a function of collision energy, temperature dependent rate constants, and the kinetic isotope effect for various reactivity profiles of F + H2 and F + D2 reactions are presented along with previous theoretical and experimental results.

12.
J Chem Phys ; 154(9): 094306, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685135

RESUMEN

We employ theoretically "exact" and numerically "accurate" Beyond Born-Oppenheimer (BBO) treatment to construct diabatic potential energy surfaces (PESs) of the benzene radical cation (C6H6 +) for the first time and explore the workability of the time-dependent discrete variable representation (TDDVR) method for carrying out dynamical calculations to evaluate the photoelectron (PE) spectra of its neutral analog. Ab initio adiabatic PESs and nonadiabatic coupling terms are computed over a series of pairwise normal modes, which exhibit rich nonadiabatic interactions starting from Jahn-Teller interactions and accidental conical intersections/seams to pseudo Jahn-Teller couplings. Once the electronic structure calculation is completed on the low-lying five doublet electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of the cationic species, diabatization is carried out employing the adiabatic-to-diabatic transformation (ADT) equations for the five-state sub-Hilbert space to compute highly accurate ADT angles, and thereby, single-valued, smooth, symmetric, and continuous diabatic PESs and couplings are constructed. Subsequently, such surface matrices are used to perform multi-state multi-mode nuclear dynamics for simulating PE spectra of benzene. Our theoretical findings clearly depict that the spectra for X̃2E1g and B̃2E2g-C̃2A2u states obtained from BBO treatment and TDDVR dynamics exhibit reasonably good agreement with the experimental results as well as with the findings of other theoretical approaches.

13.
Phys Chem Chem Phys ; 22(47): 27496-27524, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33283826

RESUMEN

We present first principle based beyond Born-Oppenheimer (BBO) theory and its applications on various models as well as realistic spectroscopic and scattering processes, where the Jahn-Teller (JT) theory is brought in conjunction with the BBO approach on the phase transition of lanthanide complexes. Over one and half decades, our development of BBO theory is demonstrated with ab initio calculations on representative molecules of spectroscopic interest (NO2 radical, Na3 and K3 clusters, NO3 radical, C6H6+ and 1,3,5-C6H3F3+ radical cations) as well as triatomic reactive scattering processes (H+ + H2 and F + H2). Such an approach exhibits the effect of JT, Renner-Teller (RT) and pseudo Jahn-Teller (PJT) type of interactions. While implementing the BBO theory, we generate highly accurate diabatic potential energy surfaces (PESs) to carry out quantum dynamics calculation and find excellent agreement with experimental photoelectron spectra of spectroscopic systems and cross-sections/rate constants of scattering processes. On the other hand, such electron-nuclear couplings incorporated through JT theory play a crucial role in dictating higher energy satellite transitions in the dielectric function spectra of the LaMnO3 complex. Overall, this article thoroughly sketches the current perspective of the BBO approach and its connection with JT theory with various applications on physical and chemical processes.

14.
J Chem Phys ; 153(17): 174301, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33167635

RESUMEN

First principles based beyond Born-Oppenheimer theory has been implemented on the F + H2 system for constructing multistate global diabatic Potential Energy Surfaces (PESs) through the incorporation of Nonadiabatic Coupling Terms (NACTs) explicitly. The spin-orbit (SO) coupling effect on the collision process of the F + H2 reaction has been included as a perturbation to the non-relativistic electronic Hamiltonian. Adiabatic PESs and NACTs for the lowest three electronic states (12A', 22A', and 12A″) are determined in hyperspherical coordinates as functions of hyperangles for a grid of fixed values of the hyperradius. Jahn-Teller (JT) type conical intersections between the two A' states translate along C2v and linear geometries in F + H2. In addition, A' and A″ states undergo Renner-Teller (RT) interaction at collinear configurations of this system. Both JT and RT couplings are validated by integrating NACTs along properly chosen contours. Subsequently, we have solved adiabatic-to-diabatic transformation (ADT) equations to evaluate the ADT angles for constructing the diabatic potential matrix of F + H2, including the SO coupling terms. The newly calculated diabatic PESs are found to be smooth, single-valued, continuous, and symmetric and can be invoked for performing accurate scattering calculations on the F + H2 system.

15.
J Chem Theory Comput ; 16(3): 1666-1680, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32003993

RESUMEN

The major bottleneck of first principle based beyond Born-Oppenheimer (BBO) treatment originates from large number and complicated expressions of adiabatic to diabatic transformation (ADT) equations for higher dimensional sub-Hilbert spaces. In order to overcome such shortcoming, we develop a generalized algorithm, "ADT" to generate the nonadiabatic equations through symbolic manipulation and to construct highly accurate diabatic surfaces for molecular processes involving excited electronic states. It is noteworthy to mention that the nonadiabatic coupling terms (NACTs) often become singular (removable) at degenerate point(s) or along a seam in the nuclear configuration space (CS) and thereby, a unitary transformation is required to convert the kinetically coupled (adiabatic) Hamiltonian to a potentially (diabatic) one to avoid such singularity(ies). The "ADT" program can be efficiently used to (a) formulate analytic functional forms of differential equations for ADT angles and diabatic potential energy matrix and (b) solve the set of coupled differential equations numerically to evaluate ADT angles, residue due to singularity(ies), ADT matrices, and finally, diabatic potential energy surfaces (PESs). For the numerical case, user can directly provide ab initio data (adiabatic PESs and NACTs) as input files to this software or can generate those input files through in-built python codes interfacing MOLPRO followed by ADT calculation. In order to establish the workability of our program package, we selectively choose six realistic molecular species, namely, NO2 radical, H3+, F + H2, NO3 radical, C6H6+ radical cation, and 1,3,5-C6H3F3+ radical cation, where two, three, five and six electronic states exhibit profound nonadiabatic interactions and are employed to compute diabatic PESs by using ab initio calculated adiabatic PESs and NACTs. The "ADT" package released under the GNU General Public License v3.0 (GPLv3) is available at https://github.com/AdhikariLAB/ADT-Program and also as the Supporting Information of this article.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...