Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 11(5): 214, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33928002

RESUMEN

This study is to test the capacity of the white rot fungus Coriolopsis gallica for the biodegradation of Diesel Fuel hydrocarbons (DHs). Using the experimental face centered central composite design (FCCCD), culture conditions of the Diesel-mended medium were optimized to reach 110.43% of DHs removal rate, and l5267.35 U L-1 of laccase production by C. gallica, simultaneously. The optimal combination of the cultural parameters was: Diesel concentration range of 2.95-3.14%, inoculum size of 3%, incubation time of 15 days, Tween 80 concentration of 0.05%, and the ratio glucose/peptone (G/P) range of 10.15-10.27. Further, the degradation ability of C. gallica for Diesel Fuel was evaluated through mycelial pellets uptake and oxidative action of fungal enzymes in the optimized degrading-medium using gas chromatography-mass spectrometry (GC-MS). Cyclosiloxanes and C20 PAHs detected as the major compound in Diesel Fuel (46%) was completely bio-transformed to simple metabolites including, essentially benzoic acid ester (71%), alcohols (1.52%) epoxy alkane (1.07%), carboxylic acids (1.24%) and quinones (0.33%). Germination rate and root elongation, as a rapid phytotoxicity test demonstrated that toxicity of Diesel's PAHs is minimized by fungal treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02769-w.

2.
Bull Environ Contam Toxicol ; 91(6): 711-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24145923

RESUMEN

Salt stress tolerance of durum wheat was assessed in control and 200 and 300 mM NaCl-exposed seed of two cultivars (BidiAP4 and Azizi). These salt treatments were accompanied by different levels of nitrate (Ca(NO3)2) added to the media (0.1, 3, 10 mM). The data showed that NaCl stress increased Na(+) and Cl(-) contents and lowered K(+) and NO3 (-) levels in seeds of BidiAP4 cultivar. In Azizi seeds exposed to NaCl, Na(+) and K(+) were highly accumulated while low levels of NO3 (-) and Cl(-) were detected. Those findings highlight the difference in the salt stress tolerance of these two durum wheat cultivars also depending on nitrogen (N) availability, Azizi cultivar being less sensitive to NaCl treatment than BidiAP4. These data also suggested a relationship between salt tolerance capacity and enhancement or maintenance of nitrogen and carbon metabolisms enzyme activity.


Asunto(s)
Nitrógeno/metabolismo , Plantas Tolerantes a la Sal/fisiología , Contaminantes del Suelo/metabolismo , Triticum/fisiología , Tolerancia a la Sal , Cloruro de Sodio/metabolismo , Triticum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...