Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809094

RESUMEN

BACKGROUND: This study investigates factors contributing Amaranthus albus control failure in processing tomato fields in northern Israel. The study region is characterized by a significant climate gradient from east to west, providing the opportunity to investigate the effect of critical elements of the agricultural environment, e.g., temperature. Eight populations were collected from commercial fields in this region. Post-emergence herbicide efficacy of metribuzin, a photosystem II inhibitor, and rimsulfuron, an acetolactate synthase (ALS) inhibitor, was assessed through dose-response analyses at various growth stages. Temperature effects on control efficacy and resistance mechanisms were also explored. RESULTS: Standard metribuzin dose (X) was ineffective on A. albus plants with more than six true-leaves, whereas 2X dose proved effective. Rimsulfuron at 16X dose was ineffective on plants with more than four true-leaves. We report here the first case of target site resistance to ALS inhibitors in A. albus, due to point mutation in the ALS gene (Pro197 to Leu). Furthermore, our findings suggest potential involvement of CYT P450 enzymes in enhanced metabolizing of rimsulfuron. An overall decrease in dry weight was observed in response to both herbicides at 16/22 °C (P < 0.0001). Rimsulfuron was effective against only one population when applied at 28/34 °C. A possible fitness cost associated with target site-resistant biotypes was observed under low temperature conditions, leading to effective control. CONCLUSION: This regional-scale study highlights the challenges faced by growers, emphasizes the need for adapting management practices to the local climatic conditions and lays the groundwork for implementing location-specific weed management strategies in commercial fields. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Plant Signal Behav ; 17(1): 2139115, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36420997

RESUMEN

Root parasitic weed Phelipanche aegyptiaca is an obligate plant parasite that causes severe damage to host crops. Agriculture crops mainly belong to the Brassicaceae, Leguminosae, Cruciferae, and Solanaceae plant families affected by this parasitic weed, leading to the devastating loss of crop yield and economic growth. This root-specific parasitic plant is not able to complete its life cycle without a suitable host and is dependent on the host plant for nutrient uptake and germination. Therefore, selected parasitic genes of P. aegyptiaca which were known to be upregulated upon interaction with the host were chosen. These genes are essential for parasitism, and reduced activity of these genes could affect host-parasitic interaction and provide resistance to the host against these parasitic weeds. To check and examine the role of these parasitic genes which can affect the development of host resistance, we silenced selected genes in the P. aegyptiaca using the tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) method. Our results demonstrated that the total number of P. aegyptiaca parasite tubercles attached to the root of the host plant Nicotiana benthamiana was substantially decreased in all the silenced plants. However, silencing of the P. aegyptiaca MNT1 gene which encodes the mannitol transporter showed a significantly reduced number of germinated shoots and tubercles. Thus, our study indicates that the mannitol transport gene of P. aegyptiaca plays a crucial role in parasitic germination, and silencing of the PaMNT1 gene abolishes the germination of parasites on the host roots.


Asunto(s)
Orobanchaceae , Parásitos , Animales , Germinación/genética , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Malezas , Manitol
3.
J Plant Res ; 134(3): 585-597, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33704586

RESUMEN

Phelipanche aegyptiaca and Orobanche spp. are obligate plant root-parasitic weeds that cause extensive damage in agricultural crop plants. Their germination requires exposure to strigolactones (SLs) exuded by the host plant roots. Here we studied genes in the host plant tomato involved in SL exudation and their impact on parasitic weeds. We provide evidence that CRISPR/Cas9-mediated targeted mutagenesis of two homologous ATP-binding cassette subfamily G (ABCG) genes, ABCG44 (Solyc08g067610) and ABCG45 (Solyc08g067620), in tomato significantly reduces SLs in the root exudate and abolishes germination of the root-parasitic weed P. aegyptiaca. Based on genome sequence similarity between ABCG44 and ABCG45, a 20-bp target sequence in their exon region was selected to design single guide RNA targeting both genes using CRISPR/Cas9. The plant binary vector constructs harboring the specific Cas9 and single guide RNA were transformed into tomato. Selected T0 mutated tomato plants showed different types of deletions at both gene loci. Genotype analysis of T1 plants suggested stable inheritance of the introduced mutations without any potential off-target effects. The phenotype of Cas9-mutated plants included increased shoot branching and growth of axillary buds, and reduced length of primary stems. Interestingly, reduced germination of P. aegyptiaca resulted from a decrease in the SL orobanchol in the root exudate of Cas9-mutated plants; however, orobanchol content in the root extract was unchanged compared to control plants. Moreover, in single and double ABCG mutants, expression of the SL-biosynthesis genes CCD8 and MAX1 decreased. The current study offers insights into CRISPR-mediated mutagenesis of ABCG genes, which could serve as an efficient control method to prevent root-parasitic weed germination.


Asunto(s)
Orobanche , Solanum lycopersicum , Adenosina Trifosfato , Germinación , Solanum lycopersicum/genética , Mutagénesis , Orobanche/genética , Raíces de Plantas/genética , Malezas/genética
4.
Sci Rep ; 11(1): 3905, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594101

RESUMEN

Root parasitic weeds infect numerous economically important crops, affecting total yield quantity and quality. A lack of an efficient control method limits our ability to manage newly developing and more virulent races of root parasitic weeds. To control the parasite induced damage in most host crops, an innovative biotechnological approach is urgently required. Strigolactones (SLs) are plant hormones derived from carotenoids via a pathway involving the Carotenoid Cleavage Dioxygenase (CCD) 7, CCD8 and More Axillary Growth 1 (MAX1) genes. SLs act as branching inhibitory hormones and strictly required for the germination of root parasitic weeds. Here, we demonstrate that CRISPR/Cas9-mediated targted editing of SL biosynthetic gene MAX1, in tomato confers resistance against root parasitic weed Phelipanche aegyptiaca. We designed sgRNA to target the third exon of MAX1 in tomato plants using the CRISPR/Cas9 system. The T0 plants were edited very efficiently at the MAX1 target site without any non-specific off-target effects. Genotype analysis of T1 plants revealed that the introduced mutations were stably passed on to the next generation. Notably, MAX1-Cas9 heterozygous and homozygous T1 plants had similar morphological changes that include excessive growth of axillary bud, reduced plant height and adventitious root formation relative to wild type. Our results demonstrated that, MAX1-Cas9 mutant lines exhibit resistance against root parasitic weed P. aegyptiaca due to reduced SL (orobanchol) level. Moreover, the expression of carotenoid biosynthetic pathway gene PDS1 and total carotenoid level was altered, as compared to wild type plants. Taking into consideration, the impact of root parasitic weeds on the agricultural economy and the obstacle to prevent and eradicate them, the current study provides new aspects into the development of an efficient control method that could be used to avoid germination of root parasitic weeds.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Orobanchaceae , Solanum lycopersicum/parasitología , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Carotenoides/metabolismo , Edición Génica , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Malezas
5.
Sci Rep ; 9(1): 11438, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391538

RESUMEN

Broomrapes (Phelipanche aegyptiaca and Orobanche spp.) are obligate plant parasites that cause extreme damage to crop plants. The parasite seeds have strict requirements for germination, involving preconditioning and exposure to specific chemicals strigolactones [SLs] exuded by the host roots. SLs are plant hormones derived from plant carotenoids via a pathway involving the Carotenoid Cleavage Dioxygenase 8 (CCD8). Having no effective means to control parasitic weeds in most crops, and with CRISPR/Cas9 being an effective gene-editing tool, here we demonstrate that CRISPR/Cas9-mediated mutagenesis of the CCD8 gene can be used to develop host resistance to the parasitic weed P. aegyptiaca. Cas9/single guide (sg) RNA constructs were targeted to the second exon of CCD8 in tomato (Solanum lycopersicum L.) plants. Several CCD8Cas9 mutated tomato lines with variable insertions or deletions in CCD8 were obtained with no identified off-targets. Genotype analysis of T1 plants showed that the introduced CCD8 mutations are inherited. Compared to control tomato plants, the CCD8Cas9 mutant had morphological changes that included dwarfing, excessive shoot branching and adventitious root formation. In addition, SL-deficient CCD8Cas9 mutants showed a significant reduction in parasite infestation compared to non-mutated tomato plants. In the CCD8Cas9 mutated lines, orobanchol (SL) content was significantly reduced but total carotenoids level and expression of genes related to carotenoid biosynthesis were increased, as compared to control plants. Taking into account, the impact of plant parasitic weeds on agriculture and difficulty to constitute efficient control methods, the current study offers insights into the development of a new, efficient method that could be combined with various collections of resistant tomato rootstocks.


Asunto(s)
Dioxigenasas/genética , Resistencia a la Enfermedad/genética , Orobanche , Proteínas de Plantas/genética , Malezas , Solanum lycopersicum/parasitología , Sistemas CRISPR-Cas/genética , Carotenoides/metabolismo , Dioxigenasas/metabolismo , Exones/genética , Regulación de la Expresión Génica de las Plantas , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/genética , Mutagénesis , Fitomejoramiento , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...