Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 5654, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30948741

RESUMEN

Time-lapse fluorescence microscopy is an essential technique for quantifying various characteristics of cellular processes, i.e. cell survival, migration, and differentiation. To perform high-throughput quantification of cellular processes, nuclei segmentation and tracking should be performed in an automated manner. Nevertheless, nuclei segmentation and tracking are challenging tasks due to embedded noise, intensity inhomogeneity, shape variation as well as a weak boundary of nuclei. Although several nuclei segmentation approaches have been reported in the literature, dealing with embedded noise remains the most challenging part of any segmentation algorithm. We propose a novel denoising algorithm, based on sparse coding, that can both enhance very faint and noisy nuclei signal but simultaneously detect nuclei position accurately. Furthermore our method is based on a limited number of parameters, with only one being critical, which is the approximate size of the objects of interest. We also show that our denoising method coupled with classical segmentation method works properly in the context of the most challenging cases. To evaluate the performance of the proposed method, we tested our method on two datasets from the cell tracking challenge. Across all datasets, the proposed method achieved satisfactory results with 96:96% recall for the C. elegans dataset. Besides, in the Drosophila dataset, our method achieved very high recall (99:3%).

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1986-1989, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29060284

RESUMEN

Generic and scalable data analysis procedures are highly demanded by the increasing number of multi-dimensional biomedical data. However, especially for time-lapse biological data, the high level of noise prevents for automated high-throughput analysis methods. The rapid developing of machine-learning methods and particularly deep-learning methods provide new tools and methodologies that can help in the denoising of such data. Using a convolutional encoder-decoder network, one can provide a scalable bio-image platform, called NucleiNet, to automatically segment, classify and track cell nuclei. The proposed method can achieve 0.99 F-score and 0.99 pixel-wise accuracy on C. elegans dataset, which means that over 99% of nuclei can be successfully detected with no merging nuclei found.


Asunto(s)
Núcleo Celular , Animales , Caenorhabditis elegans , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA