Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Signal ; 116: 111056, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38262555

RESUMEN

Despite the observation of synergistic interactions between the urotensinergic and angiotensinergic systems, the interplay between the urotensin II receptor (hUT) and the angiotensin II type 1 receptor (hAT1R) in regulating cellular signaling remains incompletely understood. Notably, the putative interaction between hUT and hAT1R could engender reciprocal allosteric modulation of their signaling signatures, defining a unique role for these complexes in cardiovascular physiology and pathophysiology. Using a combination of co-immunoprecipitation, bioluminescence resonance energy transfer (BRET) and FlAsH BRET-based conformational biosensors, we first demonstrated the physical interaction between hUT and hAT1R. Next, to analyze how this functional interaction regulated proximal and distal hUT- and hAT1R-associated signaling pathways, we used BRET-based signaling biosensors and western blots to profile pathway-specific signaling in HEK 293 cells expressing hUT, hAT1R or both. We observed that hUT-hAT1R heterodimers triggered distinct signaling outcomes compared to their respective parent receptors alone. Notably, co-transfection of hUT and hAT1R has no impact on hUII-induced Gq activation but significantly reduced the potency and efficacy of Ang II to mediate Gq activation. Interestingly, URP, the second hUT endogenous ligand, produce a distinct signaling signature compared to hUII at hUT-hAT1R. Our results therefore suggest that assembly of hUT with hAT1R might be important for allosteric modulation of outcomes associated with specific hardwired signaling complexes in healthy and disease states. Altogether, our work, which potentially explains the interplay observed in native cells and tissues, validates such complexes as potential targets to promote the design of compounds that can modulate heterodimer function selectively.


Asunto(s)
Receptor de Angiotensina Tipo 1 , Urotensinas , Humanos , Angiotensina II , Células HEK293
2.
J Biol Chem ; 297(3): 101057, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34389356

RESUMEN

Over the last decade, the urotensinergic system, composed of one G protein-coupled receptor and two endogenous ligands, has garnered significant attention as a promising new target for the treatment of various cardiovascular diseases. Indeed, this system is associated with various biomarkers of cardiovascular dysfunctions and is involved in changes in cardiac contractility, fibrosis, and hypertrophy contributing, like the angiotensinergic system, to the pathogenesis and progression of heart failure. Significant investment has been made toward the development of clinically relevant UT ligands for therapeutic intervention, but with little or no success to date. This system therefore remains to be therapeutically exploited. Pepducins and other lipidated peptides have been used as both mechanistic probes and potential therapeutics; therefore, pepducins derived from the human urotensin II receptor might represent unique tools to generate signaling bias and study hUT signaling networks. Two hUT-derived pepducins, derived from the second and the third intracellular loop of the receptor (hUT-Pep2 and [Trp1, Leu2]hUT-Pep3, respectively), were synthesized and pharmacologically characterized. Our results demonstrated that hUT-Pep2 and [Trp1, Leu2]hUT-Pep3 acted as biased ago-allosteric modulators, triggered ERK1/2 phosphorylation and, to a lesser extent, IP1 production, and stimulated cell proliferation yet were devoid of contractile activity. Interestingly, both hUT-derived pepducins were able to modulate human urotensin II (hUII)- and urotensin II-related peptide (URP)-mediated contraction albeit to different extents. These new derivatives represent unique tools to reveal the intricacies of hUT signaling and also a novel avenue for the design of allosteric ligands selectively targeting hUT signaling potentially.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hormonas Peptídicas/metabolismo , Péptidos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Regulación Alostérica , Proliferación Celular , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Ligandos , Hormonas Peptídicas/química , Hormonas Peptídicas/genética , Péptidos/química , Conformación Proteica en Hélice alfa , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
3.
Mol Cell Biol ; 40(15)2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32366382

RESUMEN

Rtf1 is a conserved RNA polymerase II (RNAPII) elongation factor that promotes cotranscriptional histone modification, RNAPII transcript elongation, and mRNA processing. Rtf1 function requires the phosphorylation of Spt5, an essential RNAPII processivity factor. Spt5 is phosphorylated within its C-terminal domain (CTD) by cyclin-dependent kinase 9 (Cdk9), the catalytic component of positive transcription elongation factor b (P-TEFb). Rtf1 recognizes phosphorylated Spt5 (pSpt5) through its Plus3 domain. Since Spt5 is a unique target of Cdk9 and Rtf1 is the only known pSpt5-binding factor, the Plus3/pSpt5 interaction is thought to be a key Cdk9-dependent event regulating RNAPII elongation. Here, we dissect Rtf1 regulation by pSpt5 in the fission yeast Schizosaccharomyces pombe We demonstrate that the Plus3 domain of Rtf1 (Prf1 in S. pombe) and pSpt5 are functionally distinct and that they act in parallel to promote Prf1 function. This alternate Plus3 domain function involves an interface that overlaps the pSpt5-binding site and that can interact with single-stranded nucleic acid or with the polymerase-associated factor (PAF) complex in vitro We further show that the C-terminal region of Prf1, which also interacts with PAF, has a similar parallel function with pSpt5. Our results elucidate unexpected complexity underlying Cdk9-dependent pathways that regulate transcription elongation.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Factores de Elongación Transcripcional/genética , Fosforilación , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Transcripción Genética/genética , Factores de Elongación Transcripcional/metabolismo
4.
Trends Pharmacol Sci ; 40(10): 725-734, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31500846

RESUMEN

The urotensinergic system, comprised of a G protein-coupled receptor (UT) and two endogenous ligands named urotensin II (UII) and urotensin II-related peptide (URP), has garnered significant attention due to its involvement in the initiation and/or the evolution of various diseases. Accordingly, multiple studies using animal models have demonstrated that UT antagonists may have utility as potential therapeutic agents for treating atherosclerosis, pulmonary arterial hypertension, heart failure, and cancer. Unfortunately, clinical investigations of UT antagonist candidates showed limited efficacy in humans. This system, which has yet to be effectively targeted, therefore remains to be therapeutically exploited. Here, we discuss various hypotheses that could explain the in vivo failure of UT antagonists.


Asunto(s)
Hormonas Peptídicas/agonistas , Hormonas Peptídicas/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Urotensinas/agonistas , Urotensinas/antagonistas & inhibidores , Animales , Sistemas de Liberación de Medicamentos , Humanos , Péptidos y Proteínas de Señalización Intracelular/agonistas , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ligandos , Hormonas Peptídicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Urotensinas/metabolismo
5.
Sci Rep ; 6: 36699, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819326

RESUMEN

Fascin 1 (FSCN1) is a cytoskeleton-associated protein recognized to function primarily in the regulation of cytoskeleton structure and formation of plasma membrane protrusions. Here we report a novel nuclear function for Fascin 1. Biochemical studies and genome wide localization using ChIP-seq identified phosphorylated Fascin 1 (pFascin) in complexes associated with transcription and that it co-localizes with histone H3 Lys4 trimethylation (H3K4me3) on chromatin. Gene expression profiling identified genes affected by Fascin 1 including SLC3A2, a gene encoding for a plasma membrane transporter that regulates intracellular amino acid levels. RbBP5, a subunit of the H3K4 histone methyltransferase (HMT) complex was found to interact with Fascin 1 supporting its role in H3K4me3 establishment at target genes. Moreover, we show that changes to SLC3A2 levels affect amino acid-mediated mTORC1 activation. These results reveal that Fascin 1 has a yet undiscovered nuclear function as an epigenetic modulator of genes essential for amino acid metabolism.


Asunto(s)
Proteínas Portadoras/metabolismo , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo , Regulación de la Expresión Génica , Expresión Génica , Proteínas de Microfilamentos/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteínas de Unión al ADN , Células HEK293 , Histonas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosforilación , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma
6.
Sci Rep ; 6: 29389, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27388124

RESUMEN

APE1 is an essential DNA repair protein that also possesses the ability to regulate transcription. It has a unique cysteine residue C65, which maintains the reduce state of several transcriptional activators such as NF-κB. How APE1 is being recruited to execute the various biological functions remains unknown. Herein, we show that APE1 interacts with a novel partner PRDX1, a peroxidase that can also prevent oxidative damage to proteins by serving as a chaperone. PRDX1 knockdown did not interfere with APE1 expression level or its DNA repair activities. However, PRDX1 knockdown greatly facilitates APE1 detection within the nucleus by indirect immunofluorescence analysis, even though APE1 level was unchanged. The loss of APE1 interaction with PRDX1 promotes APE1 redox function to activate binding of the transcription factor NF-κB onto the promoter of a target gene, the proinflammatory chemokine IL-8 involved in cancer invasion and metastasis, resulting in its upregulation. Depletion of APE1 blocked the upregulation of IL-8 in the PRDX1 knockdown cells. Our findings suggest that the interaction of PRDX1 with APE1 represents a novel anti-inflammatory function of PRDX1, whereby the association safeguards APE1 from reducing transcription factors and activating superfluous gene expression, which otherwise could trigger cancer invasion and metastasis.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Interleucina-8/genética , FN-kappa B/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Neoplasias Gástricas/genética , Núcleo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Peróxido de Hidrógeno/farmacología , Invasividad Neoplásica , Metástasis de la Neoplasia , Estrés Oxidativo , Regiones Promotoras Genéticas , Neoplasias Gástricas/metabolismo , Activación Transcripcional
7.
PLoS One ; 9(11): e112742, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25409157

RESUMEN

Stress granules (SGs) are well characterized cytoplasmic RNA bodies that form under various stress conditions. We have observed that exposure of mammalian cells in culture to low doses of UVC induces the formation of discrete cytoplasmic RNA granules that were detected by immunofluorescence staining using antibodies to RNA-binding proteins. UVC-induced cytoplasmic granules are not Processing Bodies (P-bodies) and are bone fide SGs as they contain TIA-1, TIA-1/R, Caprin1, FMRP, G3BP1, PABP1, well known markers, and mRNA. Concomitant with the accumulation of the granules in the cytoplasm, cells enter a quiescent state, as they are arrested in G1 phase of the cell cycle in order to repair DNA damages induced by UVC irradiation. This blockage persists as long as the granules are present. A tight correlation between their decay and re-entry into S-phase was observed. However the kinetics of their formation, their low number per cell, their absence of fusion into larger granules, their persistence over 48 hours and their slow decay, all differ from classical SGs induced by arsenite or heat treatment. The induction of these SGs does not correlate with major translation inhibition nor with phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). We propose that a restricted subset of mRNAs coding for proteins implicated in cell cycling are removed from the translational apparatus and are sequestered in a repressed form in SGs.


Asunto(s)
Citoplasma/efectos de la radiación , Rayos Ultravioleta , Animales , Biomarcadores/metabolismo , Proliferación Celular/efectos de la radiación , Citoplasma/metabolismo , ADN/biosíntesis , Relación Dosis-Respuesta en la Radiación , Ratones , Células 3T3 NIH
8.
PLoS One ; 9(11): e113273, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25409315

RESUMEN

Enterotoxigenic Escherichia coli produce various heat-labile and heat-stable enterotoxins. STb is a low molecular weight heat-resistant toxin responsible for diarrhea in farm animals, mainly young pigs. A previous study demonstrated that cells having internalized STb toxin induce epithelial barrier dysfunction through changes in tight junction (TJ) proteins. These modifications contribute probably to the diarrhea observed. To gain insight into the mechanism of increased intestinal permeability following STb exposure we treated human colon cells (T84) with purified STb toxin after which cells were harvested and proteins extracted. Using a 1% Nonidet P-40-containing solution we investigated the distribution of claudin-1, a major structural and functional TJ protein responsible for the epithelium impermeability, between membrane (NP40-insoluble) and the cytoplasmic (NP-40 soluble) location. Using immunoblot and confocal microscopy, we observed that treatment of T84 cell monolayers with STb induced redistribution of claudin-1. After 24 h, cells grown in Ca++-free medium treated with STb showed about 40% more claudin-1 in the cytoplasm compare to the control. Switching from Ca++-free to Ca++-enriched medium (1.8 mM) increased the dislodgement rate of claudin-1 as comparable quantitative delocalization was observed after only 6 h. Medium supplemented with the same concentration of Mg++ or Zn++ did not affect the dislodgement rate compared to the Ca++-free medium. Using anti-phosphoserine and anti-phosphothreonine antibodies, we observed that the loss of membrane claudin-1 was accompanied by dephosphorylation of this TJ protein. Overall, our findings showed an important redistribution of claudin-1 in cells treated with STb toxin. The loss of phosphorylated TJ membrane claudin-1 is likely to be involved in the increased permeability observed. The mechanisms by which these changes are brought about remain to be elucidated.


Asunto(s)
Toxinas Bacterianas/farmacología , Claudina-1/metabolismo , Escherichia coli Enterotoxigénica/metabolismo , Enterotoxinas/farmacología , Proteínas de Escherichia coli/farmacología , Uniones Estrechas/metabolismo , Línea Celular , Colon/citología , Colon/metabolismo , Medios de Cultivo/química , Citoplasma/metabolismo , Humanos , Fosforilación/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...