Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 184, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360973

RESUMEN

At the early stage of tumor progression, fibroblasts are located at the outer edges of the tumor, forming an encasing layer around it. In this work, we have developed a 3D in vitro model where fibroblasts' layout resembles the structure seen in carcinoma in situ. We use a microfluidic encapsulation technology to co-culture fibroblasts and cancer cells within hollow, permeable, and elastic alginate shells. We find that in the absence of spatial constraint, fibroblasts and cancer cells do not mix but segregate into distinct aggregates composed of individual cell types. However, upon confinement, fibroblasts enwrap cancer cell spheroid. Using a combination of biophysical methods and live imaging, we find that buildup of compressive stress is required to induce fibroblasts spreading over the aggregates of tumor cells. We propose that compressive stress generated by the tumor growth might be a mechanism that prompts fibroblasts to form a capsule around the tumor.


Asunto(s)
Carcinoma in Situ , Fibroblastos , Humanos , Línea Celular Tumoral , Fibroblastos/metabolismo , Esferoides Celulares , Técnicas de Cocultivo , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología
2.
Biol Rev Camb Philos Soc ; 98(5): 1668-1686, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157910

RESUMEN

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.


Asunto(s)
Neoplasias , Filosofía , Investigación , Estudios Interdisciplinarios
3.
Biomaterials ; 295: 122033, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764194

RESUMEN

Human pluripotent stem cells (hPSCs) have emerged as the most promising cellular source for cell therapies. To overcome the scale-up limitations of classical 2D culture systems, suspension cultures have been developed to meet the need for large-scale culture in regenerative medicine. Despite constant improvements, current protocols that use microcarriers or generate cell aggregates only achieve moderate amplification performance. Here, guided by reports showing that hPSCs can self-organize in vitro into cysts reminiscent of the epiblast stage in embryo development, we developed a physio-mimetic approach for hPSC culture. We engineered stem cell niche microenvironments inside microfluidics-assisted core-shell microcapsules. We demonstrate that lumenized three-dimensional colonies significantly improve viability and expansion rates while maintaining pluripotency compared to standard hPSC culture platforms such as 2D cultures, microcarriers, and aggregates. By further tuning capsule size and culture conditions, we scale up this method to industrial-scale stirred tank bioreactors and achieve an unprecedented hPSC amplification rate of 277-fold in 6.5 days. In brief, our findings indicate that our 3D culture system offers a suitable strategy both for basic stem cell biology experiments and for clinical applications.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes , Humanos , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Cultivadas , Reactores Biológicos
4.
Bull Cancer ; 109(1): 38-48, 2022 Jan.
Artículo en Francés | MEDLINE | ID: mdl-34996600

RESUMEN

Monolayer cultures of cell lines and derived-patient cells have long been the in vitro model of choice in oncology. In particular, these models have made it possible to decipher the mechanisms that determine tumor proliferation and invasion. However these 2D models are insufficient because they do not take into account the spatial organization of cells and their interactions with each other or with the extracellular matrix. In the context of cancer, there is a need to develop new 3D (tumoroid) models in order to gain a better understanding of the development of these pathologies but also to assess the penetration of drugs through a tissue and the associated cellular response. We present here the cell capsule technology (CCT), which allows the production of different tumoroid models: simple or more complex 3D culture models including co-culture of tumor cells with components of the microenvironment (fibroblasts, matrix, etc.). The development of these new 3D culture systems now makes it possible to propose refined physiopathological models that will allow the implementation of improved targeted therapeutic strategies.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células/métodos , Encapsulación Celular/métodos , Organoides , Esferoides Celulares , Alginatos , Fibroblastos Asociados al Cáncer , Comunicación Celular , Proliferación Celular , Técnicas de Cocultivo/métodos , Transición Epitelial-Mesenquimal , Matriz Extracelular/química , Humanos , Invasividad Neoplásica , Células Tumorales Cultivadas , Microambiente Tumoral
5.
Blood Adv ; 5(23): 5372-5386, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34555842

RESUMEN

Non-Hodgkin B-cell lymphomas (B-NHL) mainly develop within lymph nodes as aggregates of tumor cells densely packed with their surrounding microenvironment, creating a tumor niche specific to each lymphoma subtypes. In vitro preclinical models mimicking biomechanical forces, cellular microenvironment, and 3D organization of B-cell lymphomas remain scarce, while all these parameters are key determinants of lymphomagenesis and drug resistance. Using a microfluidic method based on cell encapsulation inside permeable, elastic, and hollow alginate microspheres, we developed a new tunable 3D model incorporating lymphoma B cells, extracellular matrix (ECM), and/or tonsil stromal cells (TSC). Under 3D confinement, lymphoma B cells were able to form cohesive spheroids resulting from overexpression of ECM components. Moreover, lymphoma B cells and TSC dynamically formed self-organized 3D spheroids favoring tumor cell growth. 3D culture induced resistance to the classical chemotherapeutic agent doxorubicin, but not to the BCL2 inhibitor ABT-199, identifying this approach as a relevant in vitro model to assess the activity of therapeutic agents in B-NHL. RNA-sequence analysis highlighted the synergy of 3D, ECM, and TSC in upregulating similar pathways in malignant B cells in vitro than those overexpressed in primary lymphoma B cells in situ. Finally, our 3D model including ECM and TSC allowed long-term in vitro survival of primary follicular lymphoma B cells. In conclusion, we propose a new high-throughput 3D model mimicking lymphoma tumor niche and making it possible to study the dynamic relationship between lymphoma B cells and their microenvironment and to screen new anti-cancer drugs.


Asunto(s)
Antineoplásicos , Linfoma de Células B , Linfoma no Hodgkin , Linfocitos B , Proliferación Celular , Humanos , Linfoma de Células B/tratamiento farmacológico , Microambiente Tumoral
6.
PLoS One ; 16(7): e0254512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34252146

RESUMEN

Spheroids encapsulated within alginate capsules are emerging as suitable in vitro tools to investigate the impact of mechanical forces on tumor growth since the internal tumor pressure can be retrieved from the deformation of the capsule. Here we focus on the particular case of Cellular Capsule Technology (CCT). We show in this contribution that a modeling approach accounting for the triphasic nature of the spheroid (extracellular matrix, tumor cells and interstitial fluid) offers a new perspective of analysis revealing that the pressure retrieved experimentally cannot be interpreted as a direct picture of the pressure sustained by the tumor cells and, as such, cannot therefore be used to quantify the critical pressure which induces stress-induced phenotype switch in tumor cells. The proposed multiphase reactive poro-mechanical model was cross-validated. Parameter sensitivity analyses on the digital twin revealed that the main parameters determining the encapsulated growth configuration are different from those driving growth in free condition, confirming that radically different phenomena are at play. Results reported in this contribution support the idea that multiphase reactive poro-mechanics is an exceptional theoretical framework to attain an in-depth understanding of CCT experiments, to confirm their hypotheses and to further improve their design.


Asunto(s)
Matriz Extracelular/química , Neoplasias/patología , Alginatos/química , Animales , Líquido Extracelular/química , Humanos , Fenómenos Mecánicos , Neoplasias/metabolismo , Porosidad , Esferoides Celulares/citología
7.
Dev Cell ; 54(5): 655-668.e6, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32800097

RESUMEN

Many organs are formed through folding of an epithelium. This change in shape is usually attributed to tissue heterogeneities, for example, local apical contraction. In contrast, compressive stresses have been proposed to fold a homogeneous epithelium by buckling. While buckling is an appealing mechanism, demonstrating that it underlies folding requires measurement of the stress field and the material properties of the tissue, which are currently inaccessible in vivo. Here, we show that monolayers of identical cells proliferating on the inner surface of elastic spherical shells can spontaneously fold. By measuring the elastic deformation of the shell, we infer the forces acting within the monolayer and its elastic modulus. Using analytical and numerical theories linking forces to shape, we find that buckling quantitatively accounts for the shape changes of our monolayers. Our study shows that forces arising from epithelial growth in three-dimensional confinement are sufficient to drive folding by buckling.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Módulo de Elasticidad/fisiología , Epitelio/crecimiento & desarrollo , Adhesión Celular/fisiología , Proliferación Celular/fisiología , Simulación por Computador , Humanos , Modelos Biológicos
8.
Nat Cell Biol ; 22(8): 1011-1023, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32719553

RESUMEN

Detection and conversion of mechanical forces into biochemical signals controls cell functions during physiological and pathological processes. Mechanosensing is based on protein deformations and reorganizations, yet the molecular mechanisms are still unclear. Using a cell-stretching device compatible with super-resolution microscopy and single-protein tracking, we explored the nanoscale deformations and reorganizations of individual proteins inside mechanosensitive structures. We achieved super-resolution microscopy after live stretching on intermediate filaments, microtubules and integrin adhesions. Simultaneous single-protein tracking and stretching showed that while integrins followed the elastic deformation of the substrate, actin filaments and talin also displayed lagged and transient inelastic responses associated with active acto-myosin remodelling and talin deformations. Capturing acute reorganizations of single molecules during stretching showed that force-dependent vinculin recruitment is delayed and depends on the maturation of integrin adhesions. Thus, cells respond to external forces by amplifying transiently and locally cytoskeleton displacements, enabling protein deformation and recruitment in mechanosensitive structures.


Asunto(s)
Actinas/fisiología , Forma de la Célula , Animales , Fenómenos Biomecánicos , Células Cultivadas , Técnicas Citológicas , Humanos , Integrinas/metabolismo , Ratones , Microscopía/métodos , Nanoestructuras , Pliegue de Proteína , Transporte de Proteínas , Talina/metabolismo , Vinculina/metabolismo
9.
Biomed Opt Express ; 11(5): 2578-2590, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32499945

RESUMEN

Imaging specimens over large scales and with a sub-micron resolution is instrumental to biomedical research. Yet, the number of pixels to form such an image usually exceeds the number of pixels provided by conventional cameras. Although most microscopes are equipped with a motorized stage to displace the specimen and acquire the image tile-by-tile, we propose an alternative strategy that does not require to move any part in the sample plane. We propose to add a scanning mechanism in the detection unit of the microscope to collect sequentially different sub-areas of the field of view. Our approach, called remote scanning, is compatible with all camera-based microscopes. We evaluate the performances in both wide-field microscopy and full-field optical coherence tomography and we show that a field of view of 2.2 × 2.2 mm2 with a 1.1 µm resolution can be acquired. We finally demonstrate that the method is especially suited to image motion-sensitive samples and large biological samples such as millimetric engineered tissues.

10.
Stem Cell Res ; 40: 101541, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31522011

RESUMEN

Tauopathies are a class of neurodegenerative diseases characterized by the presence of pathological intracellular deposits of Tau proteins. Six isoforms of Tau are expressed in the adult human brain, resulting from alternative splicing of the MAPT gene. Tau splicing is developmentally regulated such that only the smallest Tau isoform is expressed in fetal brain, contrary to the adult brain showing the expression of all 6 isoforms. Induced Pluripotent Stem Cell (iPSC) technology has opened up new perspectives in human disease modeling, including tauopathies. However, a major challenge to in vitro recapitulation of Tau pathology in iPSC-derived neurons is their relative immaturity. In this study, we examined the switch in Tau splicing from fetal-only to all adult Tau isoforms during the differentiation of iPSC-derived neurons in a new 3D culture system. First, we showed that iPSC-induced neurons inside Matrigel-coated alginate capsules were able to differentiate into cortical neurons. Then, using a new assay that allowed both the qualitative and the quantitative analysis of all adult MAPT mRNA isoforms individually, we demonstrated that BrainPhys-maintained neurons expressed the 6 adult MAPT mRNA transcripts from 25 weeks of maturation, making this model highly suitable for modeling Tau pathology and therapeutic purposes.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neuronas/metabolismo , Proteínas tau/metabolismo , Alginatos/química , Línea Celular , Linaje de la Célula , Corteza Cerebral/metabolismo , Colágeno/química , Combinación de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Laminina/química , Neuronas/citología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoglicanos/química , Proteínas tau/genética
11.
Langmuir ; 35(25): 8398-8403, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31199660

RESUMEN

Poly(butadiene)- b-poly(ethylene oxide) (PBut2.5- b-PEO1.3) giant polymersomes were prepared using an emulsion-centrifugation method. The impact of a fast decrease of the osmotic pressure inside the lumen of giant PBut- b-PEO vesicles was studied by confocal microscopy. This osmotic imbalance was created by performing the photoinduced polymerization of acrylamide inside these giant polymersomes, mimicking cell-like confinement. Experimental conditions (irradiation time, relative concentration of monomer, and photoinitiator) were optimized to induce the fastest and highest osmotic pressure difference in bulk solution. When confined inside polymersomes with a low permeability membrane made of PBut- b-PEO copolymers, this hyper-osmotic shock induced a fast disruption of the membrane and polymersome burst. These findings, complementary to hypotonic shock approaches previously reported, are demonstrating the versatility and relevance of controlling and modulating osmotic pressure imbalance in self-assembled artificial cell systems and protocells.

12.
Nat Commun ; 10(1): 1974, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036801

RESUMEN

Caveolin-3 is the major structural protein of caveolae in muscle. Mutations in the CAV3 gene cause different types of myopathies with altered membrane integrity and repair, expression of muscle proteins, and regulation of signaling pathways. We show here that myotubes from patients bearing the CAV3 P28L and R26Q mutations present a dramatic decrease of caveolae at the plasma membrane, resulting in abnormal response to mechanical stress. Mutant myotubes are unable to buffer the increase in membrane tension induced by mechanical stress. This results in impaired regulation of the IL6/STAT3 signaling pathway leading to its constitutive hyperactivation and increased expression of muscle genes. These defects are fully reversed by reassembling functional caveolae through expression of caveolin-3. Our study reveals that under mechanical stress the regulation of mechanoprotection by caveolae is directly coupled with the regulation of IL6/STAT3 signaling in muscle cells and that this regulation is absent in Cav3-associated dystrophic patients.


Asunto(s)
Caveolas/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Interleucina-6/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular , Humanos , Interleucina-6/genética , Mecanotransducción Celular , Fibras Musculares Esqueléticas/patología , Mutación/genética , Factor de Transcripción STAT3/genética
13.
Philos Trans A Math Phys Eng Sci ; 377(2144): 20180070, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30879412

RESUMEN

For many organisms, shapes emerge from growth, which generates stresses, which in turn can feedback on growth. In this review, theoretical methods to analyse various aspects of morphogenesis are discussed with the aim to determine the most adapted method for tissue mechanics. We discuss the need to work at scales intermediate between cells and tissues and emphasize the use of finite elasticity for this. We detail the application of these ideas to four systems: active cells embedded in tissues, brain cortical convolutions, the cortex of Caenorhabditis elegans during elongation and finally the proliferation of epithelia on extracellular matrix. Numerical models well adapted to inhomogeneities are also presented. This article is part of the theme issue 'Rivlin's legacy in continuum mechanics and applied mathematics'.


Asunto(s)
Fenómenos Fisiológicos Celulares , Modelos Biológicos , Morfogénesis/fisiología , Animales , Fenómenos Biomecánicos , Fenómenos Biofísicos , Caenorhabditis elegans/embriología , Proliferación Celular , Corteza Cerebral/crecimiento & desarrollo , Células del Tejido Conectivo/fisiología , Elasticidad , Humanos
14.
PLoS Comput Biol ; 15(3): e1006273, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30849070

RESUMEN

Model simulations indicate that the response of growing cell populations on mechanical stress follows the same functional relationship and is predictable over different cell lines and growth conditions despite experimental response curves look largely different. We develop a hybrid model strategy in which cells are represented by coarse-grained individual units calibrated with a high resolution cell model and parameterized by measurable biophysical and cell-biological parameters. Cell cycle progression in our model is controlled by volumetric strain, the latter being derived from a bio-mechanical relation between applied pressure and cell compressibility. After parameter calibration from experiments with mouse colon carcinoma cells growing against the resistance of an elastic alginate capsule, the model adequately predicts the growth curve in i) soft and rigid capsules, ii) in different experimental conditions where the mechanical stress is generated by osmosis via a high molecular weight dextran solution, and iii) for other cell types with different growth kinetics from the growth kinetics in absence of external stress. Our model simulation results suggest a generic, even quantitatively same, growth response of cell populations upon externally applied mechanical stress, as it can be quantitatively predicted using the same growth progression function.


Asunto(s)
Mecanotransducción Celular/fisiología , Modelos Biológicos , Esferoides Celulares/fisiología , Células Tumorales Cultivadas/fisiología , Animales , Línea Celular Tumoral , Forma de la Célula/fisiología , Biología Computacional , Humanos , Ratones
15.
Nat Methods ; 15(6): 449-454, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29713082

RESUMEN

Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Microscopía de Interferencia/métodos , Imagen Individual de Molécula/métodos , Actinas/química , Actinas/fisiología , Humanos , Factor 3 de Transcripción de Unión a Octámeros/química , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Células Madre Pluripotentes
16.
Development ; 144(23): 4422-4427, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183945

RESUMEN

Hollow vesicular tissues of various sizes and shapes arise in biological organs such as ears, guts, hearts, brains and even entire organisms. Regulating their size and shape is crucial for their function. Although chemical signaling has been thought to play a role in the regulation of cellular processes that feed into larger scales, it is increasingly recognized that mechanical forces are involved in the modulation of size and shape at larger length scales. Motivated by a variety of examples of tissue cyst formation and size control that show simultaneous growth and size oscillations, we create a minimal theoretical framework for the growth and dynamics of a soft, fluid-permeable, spherical shell. We show that these shells can relieve internal pressure by bursting intermittently, shrinking and re-growing, providing a simple mechanism by which hydraulically gated oscillations can regulate size. To test our theory, we develop an in vitro experimental set-up to monitor the growth and oscillations of a hollow tissue spheroid growing freely or when confined. A simple generalization of our theory to account for irreversible deformations allows us to explain the time scales and the amplitudes of oscillations in terms of the geometry and mechanical properties of the tissue shells. Taken together, our theory and experimental observations show how soft hydraulics can regulate the size of growing tissue shells.


Asunto(s)
Modelos Biológicos , Tamaño de los Órganos/fisiología , Fenómenos Biomecánicos , Línea Celular , Humanos , Hidrodinámica , Microfluídica , Organogénesis/fisiología , Esferoides Celulares/citología
17.
Sci Rep ; 7: 42378, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28186188

RESUMEN

While live 3D high resolution microscopy techniques are developing rapidly, their use for biological applications is partially hampered by practical difficulties such as the lack of a versatile sample chamber. Here, we propose the design of a multi-usage observation chamber adapted for live 3D bio-imaging. We show the usefulness and practicality of this chamber, which we named the UniverSlide, for live imaging of two case examples, namely multicellular systems encapsulated in sub-millimeter hydrogel shells and zebrafish larvae. We also demonstrate its versatility and compatibility with all microscopy devices by using upright or inverted microscope configurations after loading the UniverSlide with fixed or living samples. Further, the device is applicable for medium/high throughput screening and automatized multi-position image acquisition, providing a constraint-free but stable and parallelized immobilization of the samples. The frame of the UniverSlide is fabricated using a stereolithography 3D printer, has the size of a microscopy slide, is autoclavable and sealed with a removable lid, which makes it suitable for use in a controlled culture environment. We describe in details how to build this chamber and we provide all the files necessary to print the different pieces in the lab.

18.
Lab Chip ; 17(1): 110-119, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27869911

RESUMEN

Liquid core capsules having a hydrogel membrane are becoming a versatile tool for three-dimensional culture of micro-organisms and mammalian cells. Making sub-millimeter capsules at a high rate, via the breakup of a compound jet in air, opens the way to high-throughput screening applications. However, control of the capsule size monodispersity, especially required for quantitative bioassays, was still lacking. Here, we report how the understanding of the underlying hydrodynamic instabilities that occur during the process can lead to calibrated core-shell bioreactors. The requirements are: i) damping the shear layer instability that develops inside the injector arising from the co-annular flow configuration of liquid phases having contrasting viscoelastic properties; ii) controlling the capillary instability of the compound jet by superposing a harmonic perturbation onto the shell flow; iii) avoiding coalescence of drops during jet fragmentation as well as during drop flight towards the gelling bath; iv) ensuring proper engulfment of the compound drops into the gelling bath for building a closed hydrogel shell. We end up with the creation of numerous identical compartments in which cells are able to form multicellular aggregates, namely spheroids. In addition, we implement an intermediate composite hydrogel layer, composed of alginate and collagen, allowing cell adhesion and thus the formation of epithelia or monolayers of cells.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Animales , Técnicas de Cultivo de Célula/instrumentación , Línea Celular Tumoral , Supervivencia Celular , Hidrodinámica , Ratones , Polímeros/química , Viscosidad
19.
Lab Chip ; 16(9): 1593-604, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27025278

RESUMEN

We present here a microfluidic device that generates sub-millimetric hollow hydrogel spheres, encapsulating cells and coated internally with a layer of reconstituted extracellular matrix (ECM) of a few microns thick. The spherical capsules, composed of alginate hydrogel, originate from the spontaneous instability of a multi-layered jet formed by co-extrusion using a coaxial flow device. We provide a simple design to manufacture this device using a DLP (digital light processing) 3D printer. Then, we demonstrate how the inner wall of the capsules can be decorated with a continuous ECM layer that is anchored to the alginate gel and mimics the basal membrane of a cellular niche. Finally, we used this approach to encapsulate human Neural Stem Cells (hNSC) derived from human Induced Pluripotent Stem Cells (hIPSC), which were further differentiated into neurons within the capsules with negligible loss of viability. Altogether, we show that these capsules may serve as cell micro-containers compatible with complex cell culture conditions and applications. These developments widen the field of research and biomedical applications of the cell encapsulation technology.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Células Inmovilizadas/citología , Microambiente Celular , Dispositivos Laboratorio en un Chip , Células-Madre Neurales/citología , Neurogénesis , Neuronas/citología , Alginatos/química , Automatización de Laboratorios , Línea Celular , Supervivencia Celular , Células Inmovilizadas/metabolismo , Colágeno/química , Combinación de Medicamentos , Matriz Extracelular/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Hidrogeles , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Laminina/química , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Impresión Tridimensional , Prueba de Estudio Conceptual , Proteoglicanos/química , Nicho de Células Madre , Propiedades de Superficie
20.
Proc Natl Acad Sci U S A ; 110(37): 14843-8, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23980147

RESUMEN

Deciphering the multifactorial determinants of tumor progression requires standardized high-throughput preparation of 3D in vitro cellular assays. We present a simple microfluidic method based on the encapsulation and growth of cells inside permeable, elastic, hollow microspheres. We show that this approach enables mass production of size-controlled multicellular spheroids. Due to their geometry and elasticity, these microcapsules can uniquely serve as quantitative mechanical sensors to measure the pressure exerted by the expanding spheroid. By monitoring the growth of individual encapsulated spheroids after confluence, we dissect the dynamics of pressure buildup toward a steady-state value, consistent with the concept of homeostatic pressure. In turn, these confining conditions are observed to increase the cellular density and affect the cellular organization of the spheroid. Postconfluent spheroids exhibit a necrotic core cemented by a blend of extracellular material and surrounded by a rim of proliferating hypermotile cells. By performing invasion assays in a collagen matrix, we report that peripheral cells readily escape preconfined spheroids and cell-cell cohesivity is maintained for freely growing spheroids, suggesting that mechanical cues from the surrounding microenvironment may trigger cell invasion from a growing tumor. Overall, our technology offers a unique avenue to produce in vitro cell-based assays useful for developing new anticancer therapies and to investigate the interplay between mechanics and growth in tumor evolution.


Asunto(s)
Invasividad Neoplásica/patología , Invasividad Neoplásica/fisiopatología , Esferoides Celulares/patología , Esferoides Celulares/fisiología , Alginatos , Animales , Fenómenos Biomecánicos , Cápsulas , Recuento de Células , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Elasticidad , Ácido Glucurónico , Células HeLa , Ácidos Hexurónicos , Humanos , Mecanotransducción Celular , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...