Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36985308

RESUMEN

The need for greener processes to satisfy the demand of platform chemicals together with the possibility of reusing CO2 from human activities has recently encouraged research on the set-up, optimization, and development of bioelectrochemical systems (BESs) for the electrosynthesis of organic compounds from inorganic carbon (CO2, HCO3-). In the present study, we tested the ability of Clostridium saccharoperbutylacetonicum N1-4 (DSMZ 14923) to produce acetate and D-3-hydroxybutyrate from inorganic carbon present in a CO2:N2 gas mix. At the same time, we tested the ability of a Shewanella oneidensis MR1 and Pseudomonas aeruginosa PA1430/CO1 consortium to provide reducing power to sustain carbon assimilation at the cathode. We tested the performance of three different systems with the same layouts, inocula, and media, but with the application of 1.5 V external voltage, of a 1000 Ω external load, and without any connection between the electrodes or external devices (open circuit voltage, OCV). We compared both CO2 assimilation rate and production of metabolites (formate, acetate 3-D-hydroxybutyrate) in our BESs with the values obtained in non-electrogenic control cultures and estimated the energy used by our BESs to assimilate 1 mol of CO2. Our results showed that C. saccharoperbutylacetonicum NT-1 achieved the maximum CO2 assimilation (95.5%) when the microbial fuel cells (MFCs) were connected to the 1000 Ω external resistor, with the Shewanella/Pseudomonas consortium as the only source of electrons. Furthermore, we detected a shift in the metabolism of C. saccharoperbutylacetonicum NT-1 because of its prolonged activity in BESs. Our results open new perspectives for the utilization of BESs in carbon capture and electrosynthesis of platform chemicals.

2.
Bioresour Technol ; 359: 127435, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35680092

RESUMEN

Bioelectrochemical systems (BES) have the potential to be used in a variety of applications such as waste biorefinery, pollutants removal, CO2 capture, and the electrosynthesis of clean and renewable biofuels or byproducts, among others. In contrast, many technical challenges need to be addressed before BES can be scaled up and put into real-world applications. Utilizing BES, this review article presents a state-of-the-art overall view of crucial concepts and the most recent innovative results and achievements acquired from the BES system. Special attention is placed on a hybrid approach for product recovery and wastewater treatment. There is also a comprehensive overview of waste biorefinery designs that are included. In conclusion, the significant obstacles and technical concerns found throughout the BES studies are discussed, and suggestions and future requirements for the virtual usage of the BES concept in actual waste treatment are outlined.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Biocombustibles , Aguas Residuales/análisis , Purificación del Agua/métodos
3.
Environ Sci Pollut Res Int ; 28(24): 30436-30451, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33891239

RESUMEN

Marine pollution is becoming more and more serious, especially in coastal areas. Because of the sequestration and consequent accumulation of pollutants in sediments (mainly organic compounds and heavy metals), marine environment restoration cannot exempt from effective remediation of sediments themselves. It has been well proven that, after entering into the seawater, these pollutants are biotransformed into their metabolites, which may be more toxic than their parent molecules. Based on their bioavailability and toxic nature, these compounds may accumulate into the living cells of marine organisms. Pollutants bioaccumulation and biomagnification along the marine food chain lead to seafood contamination and human health hazards. Nowadays, different technologies are available for sediment remediation, such as physicochemical, biological, and bioelectrochemical processes. This paper gives an overview of the most recent techniques for marine sediment remediation while presenting sediment-based microbial fuel cells (SMFCs). We discuss the issues, the progress, and future perspectives of SMFC application to the removal of hydrocarbons and metals in the marine environment with concurrent energy production. We give an insight into the possible mechanisms leading to sediment remediation, SMFC energy balance, and future exploitation.


Asunto(s)
Fuentes de Energía Bioeléctrica , Restauración y Remediación Ambiental , Metales Pesados , Contaminantes Químicos del Agua , Sedimentos Geológicos , Humanos , Hidrocarburos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
4.
Mar Pollut Bull ; 124(1): 502-511, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28735966

RESUMEN

The distribution of metals in surface sediments of Gulf of Pozzuoli (GoP), embedding the former second Italian largest integrated steelworks of Bagnoli, was studied based on sediment dispersal, quality guidelines (SQGs) and quantitative pollution indices of the respective metals. As, Cd, Hg, Pb, Zn largely exceeded the limits. Hg had a mean of 5.8mg/kg, twentyfold higher the rule, accumulating primarily near Bagnoli site. The mean effective range quotient, m-ERM-Q, revealed a high potential for negative biological effects especially in the area nearby the Bagnoli site. The enrichment factor (EF) values were outstandingly high, >1.5 with values which were often ≥100. The geoaccumulation index, Igeo, was very critical for Cr, Cu, Hg and Ni, showing an Igeo in the range of strongly polluted (45). The principal component analysis (PCA) and Pearson's correlation matrix (CM), excluded significant contribution from weathering products.


Asunto(s)
Sedimentos Geológicos/análisis , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Ecotoxicología/métodos , Monitoreo del Ambiente , Italia , Mercurio/análisis , Metalurgia , Análisis Multivariante , Análisis de Componente Principal , Medición de Riesgo
5.
Probiotics Antimicrob Proteins ; 5(4): 252-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26783071

RESUMEN

The intensive use and misuse of antibiotics over the last decades have generated a strong selective pressure for the emergence of multi-resistant strains and nosocomial infections. Biofilm has been demonstrated as a key parameter in spreading infections, especially in hospitals and healthcare units. Therefore, the development of novel anti-biofilm drugs is actually of the upmost importance. Here, the antimicrobial and antibiofilm activities toward pathogenic microorganisms of a set of non-ribosomal synthesized peptides and polyketides isolated from Bacillus amyloliquefaciens ANT1 culture supernatant are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...