Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(18): 3333-3346.e5, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37738964

RESUMEN

The proteasome is responsible for removal of ubiquitinated proteins. Although several aspects of its regulation (e.g., assembly, composition, and post-translational modifications) have been unraveled, studying its adaptive compartmentalization in response to stress is just starting to emerge. We found that following amino acid starvation, the proteasome is translocated from its large nuclear pool to the cytoplasm-a response regulated by newly identified mTOR-agonistic amino acids-Tyr, Trp, and Phe (YWF). YWF relay their signal upstream of mTOR through Sestrin3 by disrupting its interaction with the GATOR2 complex. The triad activates mTOR toward its downstream substrates p62 and transcription factor EB (TFEB), affecting both proteasomal and autophagic activities. Proteasome translocation stimulates cytosolic proteolysis which replenishes amino acids, thus enabling cell survival. In contrast, nuclear sequestration of the proteasome following mTOR activation by YWF inhibits this proteolytic adaptive mechanism, leading to cell death, which establishes this newly identified pathway as a key stress-coping mechanism.


Asunto(s)
Aminoácidos Aromáticos , Complejo de la Endopetidasa Proteasomal , Supervivencia Celular , Aminoácidos , Serina-Treonina Quinasas TOR/genética
2.
Mol Oncol ; 17(12): 2675-2693, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716913

RESUMEN

The core Hippo pathway module consists of a tumour-suppressive kinase cascade that inhibits the transcriptional coactivators Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (WWTR1; also known as TAZ). When the Hippo pathway is downregulated, as often occurs in breast cancer, YAP/TAZ activity is induced. To elaborate the roles of TAZ in triple-negative breast cancer (TNBC), we depleted Taz in murine TNBC 4T1 cells, using either CRISPR/Cas9 or small hairpin RNA (shRNA). TAZ-depleted cells and their controls, harbouring wild-type levels of TAZ, were orthotopically injected into the mammary fat pads of syngeneic BALB/c female mice, and mice were monitored for tumour growth. TAZ depletion resulted in smaller tumours compared to the tumours generated by control cells, in line with the notion that TAZ functions as an oncogene in breast cancer. Tumours, as well as their corresponding in vitro cultured cells, were then subjected to gene expression profiling by RNA sequencing (RNA-seq). Interestingly, pathway analysis of the RNA-seq data indicated a TAZ-dependent enrichment of 'Inflammatory Response', a pathway correlated with TAZ expression levels also in human breast cancer tumours. Specifically, the RNA-seq analysis predicted a significant depletion of regulatory T cells (Tregs) in TAZ-deficient tumours, which was experimentally validated by the staining of tumour sections and by quantitative cytometry by time of flight (CyTOF). Strikingly, the differences in tumour size were completely abolished in immune-deficient mice, demonstrating that the immune-modulatory capacity of TAZ is critical for its oncogenic activity in this setting. Cytokine array analysis of conditioned medium from cultured cells revealed that TAZ increased the abundance of a small group of cytokines, including plasminogen activator inhibitor 1 (Serpin E1; also known as PAI-1), CCN family member 4 (CCN4; also known as WISP-1) and interleukin-23 (IL-23), suggesting a potential mechanistic explanation for its in vivo immunomodulatory effect. Together, our results imply that TAZ functions in a non-cell-autonomous manner to modify the tumour immune microenvironment and dampen the anti-tumour immune response, thereby facilitating tumour growth.


Asunto(s)
Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Vía de Señalización Hippo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Microambiente Tumoral , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo
4.
Nat Commun ; 13(1): 7199, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443319

RESUMEN

Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Genes Reguladores , Proteínas Serina-Treonina Quinasas/genética , Mama , Represión Psicológica , Co-Represor 1 de Receptor Nuclear/genética
5.
J Exp Clin Cancer Res ; 41(1): 190, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655310

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) and isomiRs play important roles in tumorigenesis as essential regulators of gene expression. 5'isomiRs exhibit a shifted seed sequence compared to the canonical miRNA, resulting in different target spectra and thereby extending the phenotypic impact of the respective common pre-miRNA. However, for most miRNAs, expression and function of 5'isomiRs have not been studied in detail yet. Therefore, this study aims to investigate the functions of miRNAs and their 5'isomiRs. METHODS: The expression of 5'isomiRs was assessed in The Cancer Genome Atlas (TCGA) breast cancer patient dataset. Phenotypic effects of miR-183 overexpression in triple-negative breast cancer (TNBC) cell lines were investigated in vitro and in vivo by quantifying migration, proliferation, tumor growth and metastasis. Direct targeting of E2F1 by miR-183-5p|+2 was validated with a 3'UTR luciferase assay and linked to the phenotypes of isomiR overexpression. RESULTS: TCGA breast cancer patient data indicated that three variants of miR-183-5p are highly expressed and upregulated, namely miR-183-5p|0, miR-183-5p|+1 and miR-183-5p|+2. However, TNBC cell lines displayed reduced proliferation and invasion upon overexpression of pre-miR-183. While invasion was reduced individually by all three isomiRs, proliferation and cell cycle progression were specifically inhibited by overexpression of miR-183-5p|+2. Proteomic analysis revealed reduced expression of E2F target genes upon overexpression of this isomiR, which could be attributed to direct targeting of E2F1, specifically by miR-183-5p|+2. Knockdown of E2F1 partially phenocopied the effect of miR-183-5p|+2 overexpression on cell proliferation and cell cycle. Gene set enrichment analysis of TCGA and METABRIC patient data indicated that the activity of E2F strongly correlated with the expression of miR-183-5p, suggesting transcriptional regulation of the miRNA by a factor of the E2F family. Indeed, in vitro, expression of miR-183-5p was regulated by E2F1. Hence, miR-183-5p|+2 directly targeting E2F1 appears to be part of a negative feedback loop potentially fine-tuning its activity. CONCLUSIONS: This study demonstrates that 5'isomiRs originating from the same arm of the same pre-miRNA (i.e. pre-miR-183-5p) may exhibit different functions and thereby collectively contribute to the same phenotype. Here, one of three isomiRs was shown to counteract expression of the pre-miRNA by negatively regulating a transcriptional activator (i.e. E2F1). We speculate that this might be part of a regulatory mechanism to prevent uncontrolled cell proliferation, which is disabled during cancer progression.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Retroalimentación , Humanos , MicroARNs/metabolismo , Proteómica , Neoplasias de la Mama Triple Negativas/metabolismo
6.
Nat Commun ; 13(1): 2800, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589715

RESUMEN

The TP53 gene is mutated in approximately 60% of all colorectal cancer (CRC) cases. Over 20% of all TP53-mutated CRC tumors carry missense mutations at position R175 or R273. Here we report that CRC tumors harboring R273 mutations are more prone to progress to metastatic disease, with decreased survival, than those with R175 mutations. We identify a distinct transcriptional signature orchestrated by p53R273H, implicating activation of oncogenic signaling pathways and predicting worse outcome. These features are shared also with the hotspot mutants p53R248Q and p53R248W. p53R273H selectively promotes rapid CRC cell spreading, migration, invasion and metastasis. The transcriptional output of p53R273H is associated with preferential binding to regulatory elements of R273 signature genes. Thus, different TP53 missense mutations contribute differently to cancer progression. Elucidation of the differential impact of distinct TP53 mutations on disease features may make TP53 mutational information more actionable, holding potential for better precision-based medicine.


Asunto(s)
Neoplasias Colorrectales , Proteína p53 Supresora de Tumor , Neoplasias Colorrectales/genética , Genes p53 , Humanos , Mutación , Fenotipo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(17): e2119644119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35439056

RESUMEN

Missense mutations in the p53 tumor suppressor abound in human cancer. Common ("hotspot") mutations endow mutant p53 (mutp53) proteins with oncogenic gain of function (GOF), including enhanced cell migration and invasiveness, favoring cancer progression. GOF is usually attributed to transcriptional effects of mutp53. To elucidate transcription-independent effects of mutp53, we characterized the protein interactome of the p53R273H mutant in cells derived from pancreatic ductal adenocarcinoma (PDAC), where p53R273H is the most frequent p53 mutant. We now report that p53R273H, but not the p53R175H hotspot mutant, interacts with SQSTM1/p62 and promotes cancer cell migration and invasion in a p62-dependent manner. Mechanistically, the p53R273H-p62 axis drives the proteasomal degradation of several cell junction­associated proteins, including the gap junction protein Connexin 43, facilitating scattered cell migration. Concordantly, down-regulation of Connexin 43 augments PDAC cell migration, while its forced overexpression blunts the promigratory effect of the p53R273H-p62 axis. These findings define a mechanism of mutp53 GOF.


Asunto(s)
Movimiento Celular , Neoplasias Pancreáticas , Proteína p53 Supresora de Tumor , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Genes p53 , Humanos , Mutación , Neoplasias Pancreáticas/genética , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Cell Rep ; 38(8): 110418, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196484

RESUMEN

By establishing multi-omics pipelines, we uncover overexpression and gene copy-number alterations of nucleoporin-93 (NUP93), a nuclear pore component, in aggressive human mammary tumors. NUP93 overexpression enhances transendothelial migration and matrix invasion in vitro, along with tumor growth and metastasis in animal models. These findings are supported by analyses of two sets of naturally occurring mutations: rare oncogenic mutations and inactivating familial nephrotic syndrome mutations. Mechanistically, NUP93 binds with importins, boosts nuclear transport of importins' cargoes, such as ß-catenin, and activates MYC. Likewise, NUP93 overexpression enhances the ultimate nuclear transport step shared by additional signaling pathways, including TGF-ß/SMAD and EGF/ERK. The emerging addiction to nuclear transport exposes vulnerabilities of NUP93-overexpressing tumors. Congruently, myristoylated peptides corresponding to the nuclear translocation signals of SMAD and ERK can inhibit tumor growth and metastasis. Our study sheds light on an emerging hallmark of advanced tumors, which derive benefit from robust nucleocytoplasmic transport.


Asunto(s)
Neoplasias de la Mama , Proteínas de Complejo Poro Nuclear , Transporte Activo de Núcleo Celular , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088837

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, which is refractory to all currently available treatments and bears dismal prognosis. About 70% of all PDAC cases harbor mutations in the TP53 tumor suppressor gene. Many of those are missense mutations, resulting in abundant production of mutant p53 (mutp53) protein in the cancer cells. Analysis of human PDAC patient data from The Cancer Genome Atlas (TCGA) revealed a negative association between the presence of missense mutp53 and infiltration of CD8+ T cells into the tumor. Moreover, CD8+ T cell infiltration was negatively correlated with the expression of fibrosis-associated genes. Importantly, silencing of endogenous mutp53 in KPC cells, derived from mouse PDAC tumors driven by mutant Kras and mutp53, down-regulated fibrosis and elevated CD8+ T cell infiltration in the tumors arising upon orthotopic injection of these cells into the pancreas of syngeneic mice. Moreover, the tumors generated by mutp53-silenced KPC cells were markedly smaller than those elicited by mutp53-proficient control KPC cells. Altogether, our findings suggest that missense p53 mutations may contribute to worse PDAC prognosis by promoting a more vigorous fibrotic tumor microenvironment and impeding the ability of the immune system to eliminate the cancer cells.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Fibrosis , Mutación Missense , Neoplasias Pancreáticas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Linfocitos T CD8-positivos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Microambiente Tumoral/inmunología , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
10.
Biochem Soc Trans ; 49(3): 1409-1423, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34100888

RESUMEN

Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated by mutagens and often mimic active growth factor receptors, or downstream effectors. Once initiated cells outgrow and attract blood vessels, a multi-step process, called metastasis, disseminates cancer cells primarily through vascular routes. The major steps of the metastatic cascade comprise intravasation into blood vessels, circulation as single or collectives of cells, and eventual colonization of distant organs. Herein, we consider metastasis as a multi-step process that seized principles and molecular players employed by physiological processes, such as tissue regeneration and migration of neural crest progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial-mesenchymal transition) underlying the establishment of micro-metastases and secondary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred depletion of putative driver mutations among metastases, in line with the pivotal role played by growth factors and epigenetic processes in metastasis. Conceivably, driver mutations may not confer the same advantage in the microenvironment of the primary tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular states hardwired by mutations becomes advantageous during metastasis. We review the latest reported examples of growth factors harnessed by the metastatic cascade, with the goal of identifying opportunities for anti-metastasis interventions. In summary, because the overwhelming majority of cancer-associated deaths are caused by metastatic disease, understanding the complexity of metastasis, especially the roles played by growth factors, is vital for preventing, diagnosing and treating metastasis.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Neoplasias/genética , Microambiente Tumoral/genética , Fibroblastos Asociados al Cáncer/metabolismo , Comunicación Celular/genética , Células Dendríticas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células Asesinas Naturales/metabolismo , Modelos Biológicos , Células Supresoras de Origen Mieloide/metabolismo , Metástasis de la Neoplasia , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Linfocitos T/metabolismo , Macrófagos Asociados a Tumores/metabolismo
11.
Cancer Res ; 81(14): 3862-3875, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33941614

RESUMEN

Lung cancers driven by mutant forms of EGFR invariably develop resistance to kinase inhibitors, often due to secondary mutations. Here we describe an unconventional mechanism of resistance to dacomitinib, a newly approved covalent EGFR kinase inhibitor, and uncover a previously unknown step of resistance acquisition. Dacomitinib-resistant (DR) derivatives of lung cancer cells were established by means of gradually increasing dacomitinib concentrations. These DR cells acquired no secondary mutations in the kinase or other domains of EGFR. Along with resistance to other EGFR inhibitors, DR cells acquired features characteristic to epithelial-mesenchymal transition, including an expanded population of aldehyde dehydrogenase-positive cells and upregulation of AXL, a receptor previously implicated in drug resistance. Unexpectedly, when implanted in animals, DR cells reverted to a dacomitinib-sensitive state. Nevertheless, cell lines derived from regressing tumors displayed renewed resistance when cultured in vitro. Three-dimensional and cocultures along with additional analyses indicated lack of involvement of hypoxia, fibroblasts, and immune cells in phenotype reversal, implying that other host-dependent mechanisms might nullify nonmutational modes of resistance. Thus, similar to the phenotypic resistance of bacteria treated with antibiotics, the reversible resisters described here likely evolve from drug-tolerant persisters and give rise to the irreversible, secondary mutation-driven nonreversible resister state. SIGNIFICANCE: This study reports that stepwise acquisition of kinase inhibitor resistance in lung cancers driven by mutant EGFR comprises a nonmutational, reversible resister state. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/14/3862/F1.large.jpg.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología
12.
Cell Rep ; 35(8): 109181, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34038737

RESUMEN

Cancer immunotherapy focuses on inhibitors of checkpoint proteins, such as programmed death ligand 1 (PD-L1). Unlike RAS-mutated lung cancers, EGFR mutant tumors have a generally low response to immunotherapy. Because treatment outcomes vary by EGFR allele, intrinsic and microenvironmental factors may be involved. Among all non-immunological signaling pathways surveyed in patients' datasets, EGFR signaling is best associated with high PD-L1. Correspondingly, active EGFRs stabilize PD-L1 transcripts and depletion of PD-L1 severely inhibits EGFR-driven tumorigenicity and metastasis in mice. The underlying mechanisms involve the recruitment of phospholipase C-γ1 (PLC-γ1) to a cytoplasmic motif of PD-L1, which enhances PLC-γ1 activation by EGFR. Once stimulated, PLC-γ1 activates calcium flux, Rho GTPases, and protein kinase C, collectively promoting an aggressive phenotype. Anti-PD-L1 antibodies can inhibit these intrinsic functions of PD-L1. Our results portray PD-L1 as a molecular amplifier of EGFR signaling and improve the understanding of the resistance of EGFR+ tumors to immunotherapy.


Asunto(s)
Antígeno B7-H1/metabolismo , Fosfolipasas de Tipo C/metabolismo , Pruebas de Carcinogenicidad , Línea Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patología
13.
Oncogene ; 40(21): 3665-3679, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33941851

RESUMEN

Ovarian cancer (OvCA) remains one of the most devastating malignancies, but treatment options are still limited. We report that amphiregulin (AREG) can serve as an effective and safe pharmacological target in a syngeneic murine model. AREG is highly abundant in abdominal fluids of patients with advanced OvCa. In immunocompetent animals, depletion or overexpression of AREG respectively prolonged or shortened animal survival. A new antibody we generated in AREG-knockout mice recognized murine AREG and reproducibly prolonged animal survival in the syngeneic model. The underlying mechanism likely involves binding of wildtype p53 to AREG's promoter and autocrine activation of the epidermal growth factor receptor (EGFR), a step blocked by the antibody. Accordingly, depletion of p53 downregulated AREG secretion and conferred tolerance, whereas blocking an adaptive process involving CXCL1, which transactivates EGFR, might increase therapeutic efficacy. Consistent with these observations, analysis of OvCa patients revealed that high AREG correlates with poor prognosis of patients expressing wildtype TP53. In conclusion, clinical tests of the novel antibody are warranted; high AREG, normal TP53, and reduced CXCL1 activity might identify patients with OvCa who may derive therapeutic benefit.


Asunto(s)
Anfirregulina/metabolismo , Anticuerpos Monoclonales/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Proteína p53 Supresora de Tumor/metabolismo , Animales , Comunicación Autocrina , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Tasa de Supervivencia
14.
Cell Rep ; 29(1): 104-117.e4, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577941

RESUMEN

The glucocorticoid receptor (GR) acts as a ubiquitous cortisol-dependent transcription factor (TF). To identify co-factors, we used protein-fragment complementation assays and found that GR recognizes FLI1 and additional ETS family proteins, TFs relaying proliferation and/or migration signals. Following steroid-dependent translocation of FLI1 and GR to the nucleus, the FLI1-specific domain (FLS) binds with GR and strongly enhances GR's transcriptional activity. This interaction has functional consequences in Ewing sarcoma (ES), childhood and adolescence bone malignancies driven by fusions between EWSR1 and FLI1. In vitro, GR knockdown inhibited the migration and proliferation of ES cells, and in animal models, antagonizing GR (or lowering cortisol) retarded both tumor growth and metastasis from bone to lung. Taken together, our findings offer mechanistic rationale for repurposing GR-targeting drugs for the treatment of patients with ES.


Asunto(s)
Proteínas Proto-Oncogénicas c-ets/metabolismo , Receptores de Glucocorticoides/metabolismo , Sarcoma de Ewing/metabolismo , Animales , Neoplasias Óseas/metabolismo , Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Proliferación Celular/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Células HEK293 , Humanos , Ratones , Ratones SCID , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo
15.
Biochem Biophys Res Commun ; 513(1): 219-225, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-30952434

RESUMEN

By year 2025 pancreatic ductal adenocarcinoma (PDAC) is expected to become the second leading cause of cancer related death. However, other than improved chemotherapy and a small molecule inhibitor of the epidermal growth factor receptor (EGFR), no targeted drugs are currently available. Repurposing of approved drugs might offer a rapid solution. We employed an animal PDAC model, expressing a mutant and a wild type form of p53 and KRAS, respectively. Cetuximab, a clinically approved anti-EGFR monoclonal antibody (mAb) weakly inhibited PDAC xenografts, similar to trastuzumab, a mAb against HER2, a co-receptor of EGFR. Because the combination of cetuximab and trastuzumab only moderately enhanced the anti-tumor effects, we combined each with a home-made mAb to the same receptor and identified two cooperative pairs. The pair of trastuzumab and a murine anti-HER2 mAb better than the anti-EGFR pair inhibited PDAC xenografts, although HER2's abundance in our model is 15-fold lower than the level of EGFR. In vitro studies attribute cooperation to forced receptor endocytosis/degradation and inhibition of both DNA synthesis and cell migration. Taken together, our results identify cooperative pairs of anti-PDAC antibodies and highlight potential mechanisms of anti-tumor effects.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Cetuximab/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Trastuzumab/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Ratones Desnudos , Neoplasias Pancreáticas/patología
16.
Proc Natl Acad Sci U S A ; 115(25): 6410-6415, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29866855

RESUMEN

Within the tumor microenvironment, cancer cells coexist with noncancerous adjacent cells that constitute the tumor microenvironment and impact tumor growth through diverse mechanisms. In particular, cancer-associated fibroblasts (CAFs) promote tumor progression in multiple ways. Earlier studies have revealed that in normal fibroblasts (NFs), p53 plays a cell nonautonomous tumor-suppressive role to restrict tumor growth. We now wished to investigate the role of p53 in CAFs. Remarkably, we found that the transcriptional program supported by p53 is altered substantially in CAFs relative to NFs. In agreement, the p53-dependent secretome is also altered in CAFs. This transcriptional rewiring renders p53 a significant contributor to the distinct intrinsic features of CAFs, as well as promotes tumor cell migration and invasion in culture. Concordantly, the ability of CAFs to promote tumor growth in mice is greatly compromised by depletion of their endogenous p53. Furthermore, cocultivation of NFs with cancer cells renders their p53-dependent transcriptome partially more similar to that of CAFs. Our findings raise the intriguing possibility that tumor progression may entail a nonmutational conversion ("education") of stromal p53, from tumor suppressive to tumor supportive.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Fibroblastos Asociados al Cáncer/patología , Línea Celular , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Técnicas de Cocultivo/métodos , Progresión de la Enfermedad , Femenino , Células HEK293 , Humanos , Ratones , Persona de Mediana Edad , Neoplasias/patología , Transcripción Genética/fisiología , Transcriptoma/fisiología , Microambiente Tumoral/fisiología
17.
Oncotarget ; 8(25): 40778-40790, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28489577

RESUMEN

Pancreatic ductal adenocarcinoma has limited treatment options. There is an urgent need for developing appropriate pre-clinical models recapitulating metastatic disease, the most common clinical scenario at presentation. Ascites accumulation occurs in up to 20-30% of patients with pancreatic cancer; this milieu represents a highly cellular research resource of metastatic peritoneal spread. In this study, we utilized pancreatic ascites/pleural effusion cancer cells to establish patient derived xenografts.Ascites/pleural effusion-patient derived xenografts were established from twelve independent cases. Xenografts were serially passed in nude mice and tissue bio-specimen banking has been established. Histopathology of emergent tumors demonstrates poorly to moderately differentiated, glandular and mucin producing tumors, mirroring morphology of primary pancreatic cancer tumors. Whole genome sequencing of six patient derived xenografts samples demonstrates common mutations and structural variations similar to those reported in primary pancreatic cancer. Xenograft tumors were dissociated to single-cells and in-vitro drug sensitivity screen assays demonstrated chemo-resistance, correlating with patient clinical scenarios, thus serving as a platform for clinically relevant translational research.Therefore, establishment of this novel ascites/pleural effusion patient derived xenograft model, with extensive histopathology and genomic characterization, opens an opportunity for the study of advanced aggressive pancreatic cancer. Characterization of metastatic disease and mechanisms of resistance to therapeutics may lead to the development of novel drug combinations.


Asunto(s)
Ascitis/patología , Carcinoma Ductal Pancreático/patología , Animales , Ascitis/etiología , Ascitis/genética , Carcinoma Ductal Pancreático/genética , Modelos Animales de Enfermedad , Femenino , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Transfección , Secuenciación Completa del Genoma/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...