Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
bioRxiv ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38826230

RESUMEN

Granzymes are a family of serine proteases mainly expressed by CD8 + T cells, natural killer cells, and innate-like lymphocytes 1,2 . Although their major role is thought to be the induction of cell death in virally infected and tumor cells, accumulating evidence suggests some granzymes can regulate inflammation by acting on extracellular substrates 2 . Recently, we found that the majority of tissue CD8 + T cells in rheumatoid arthritis (RA) synovium, inflammatory bowel disease and other inflamed organs express granzyme K (GZMK) 3 , a tryptase-like protease with poorly defined function. Here, we show that GZMK can activate the complement cascade by cleaving C2 and C4. The nascent C4b and C2a fragments form a C3 convertase that cleaves C3, allowing further assembly of a C5 convertase that cleaves C5. The resulting convertases trigger every major event in the complement cascade, generating the anaphylatoxins C3a and C5a, the opsonins C4b and C3b, and the membrane attack complex. In RA synovium, GZMK is enriched in areas with abundant complement activation, and fibroblasts are the major producers of complement C2, C3, and C4 that serve as targets for GZMK-mediated complement activation. Our findings describe a previously unidentified pathway of complement activation that is entirely driven by lymphocyte-derived GZMK and proceeds independently of the classical, lectin, or alternative pathways. Given the widespread abundance of GZMK -expressing T cells in tissues in chronic inflammatory diseases and infection, GZMK-mediated complement activation is likely to be an important contributor to tissue inflammation in multiple disease contexts.

2.
Nat Commun ; 15(1): 4650, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821936

RESUMEN

Synovial tissue inflammation is a hallmark of rheumatoid arthritis (RA). Recent work has identified prominent pathogenic cell states in inflamed RA synovial tissue, such as T peripheral helper cells; however, the epigenetic regulation of these states has yet to be defined. Here, we examine genome-wide open chromatin at single-cell resolution in 30 synovial tissue samples, including 12 samples with transcriptional data in multimodal experiments. We identify 24 chromatin classes and predict their associated transcription factors, including a CD8 + GZMK+ class associated with EOMES and a lining fibroblast class associated with AP-1. By integrating with an RA tissue transcriptional atlas, we propose that these chromatin classes represent 'superstates' corresponding to multiple transcriptional cell states. Finally, we demonstrate the utility of this RA tissue chromatin atlas through the associations between disease phenotypes and chromatin class abundance, as well as the nomination of classes mediating the effects of putatively causal RA genetic variants.


Asunto(s)
Artritis Reumatoide , Cromatina , Membrana Sinovial , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/inmunología , Humanos , Cromatina/metabolismo , Cromatina/genética , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Epigénesis Genética , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Fibroblastos/metabolismo , Factor de Transcripción AP-1/metabolismo , Factor de Transcripción AP-1/genética , Transcripción Genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo
3.
bioRxiv ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746317

RESUMEN

T-cells recognize antigens and induce specialized gene expression programs (GEPs) enabling functions including proliferation, cytotoxicity, and cytokine production. Traditionally, different classes of helper T-cells express mutually exclusive responses - for example, Th1, Th2, and Th17 programs. However, new single-cell RNA sequencing (scRNA-Seq) experiments have revealed a continuum of T-cell states without discrete clusters corresponding to these subsets, implying the need for new analytical frameworks. Here, we advance the characterization of T-cells with T-CellAnnoTator (TCAT), a pipeline that simultaneously quantifies pre-defined GEPs capturing activation states and cellular subsets. From 1,700,000 T-cells from 700 individuals across 38 tissues and five diverse disease contexts, we discover 46 reproducible GEPs reflecting the known core functions of T-cells including proliferation, cytotoxicity, exhaustion, and T helper effector states. We experimentally characterize several novel activation programs and apply TCAT to describe T-cell activation and exhaustion in Covid-19 and cancer, providing insight into T-cell function in these diseases.

4.
Nat Commun ; 15(1): 1204, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331990

RESUMEN

Autoimmune disease heritability is enriched in T cell-specific regulatory regions of the genome. Modern-day T cell datasets now enable association studies between single nucleotide polymorphisms (SNPs) and a myriad of molecular phenotypes, including chromatin accessibility, gene expression, transcriptional programs, T cell antigen receptor (TCR) amino acid usage, and cell state abundances. Such studies have identified hundreds of quantitative trait loci (QTLs) in T cells that colocalize with genetic risk for autoimmune disease. The key challenge facing immunologists today lies in synthesizing these results toward a unified understanding of the autoimmune T cell: which genes, cell states, and antigens drive tissue destruction?


Asunto(s)
Enfermedades Autoinmunes , Linfocitos T , Humanos , Autoinmunidad/genética , Sitios de Carácter Cuantitativo/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Receptores de Antígenos de Linfocitos T/genética , Enfermedades Autoinmunes/genética , Estudio de Asociación del Genoma Completo
5.
Nat Commun ; 15(1): 347, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184653

RESUMEN

The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Núcleo Celular , Forma de la Célula , Proteínas Mutantes
6.
Nature ; 623(7987): 616-624, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938773

RESUMEN

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Asunto(s)
Artritis Reumatoide , Humanos , Artritis Reumatoide/complicaciones , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Citocinas/metabolismo , Inflamación/complicaciones , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Membrana Sinovial/patología , Linfocitos T/inmunología , Linfocitos B/inmunología , Predisposición Genética a la Enfermedad/genética , Fenotipo , Análisis de Expresión Génica de una Sola Célula
8.
Nat Genet ; 55(12): 2200-2210, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036783

RESUMEN

In autoimmune diseases such as rheumatoid arthritis, the immune system attacks the body's own cells. Developing a precise understanding of the cell states where noncoding autoimmune risk variants impart causal mechanisms is critical to developing curative therapies. Here, to identify noncoding regions with accessible chromatin that associate with cell-state-defining gene expression patterns, we leveraged multimodal single-nucleus RNA and assay for transposase-accessible chromatin (ATAC) sequencing data across 28,674 cells from the inflamed synovial tissue of 12 donors. Specifically, we used a multivariate Poisson model to predict peak accessibility from single-nucleus RNA sequencing principal components. For 14 autoimmune diseases, we discovered that cell-state-dependent ('dynamic') chromatin accessibility peaks in immune cell types were enriched for heritability, compared with cell-state-invariant ('cs-invariant') peaks. These dynamic peaks marked regulatory elements associated with T peripheral helper, regulatory T, dendritic and STAT1+CXCL10+ myeloid cell states. We argue that dynamic regulatory elements can help identify precise cell states enriched for disease-critical genetic variation.


Asunto(s)
Enfermedades Autoinmunes , Cromatina , Humanos , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Cromosomas , Enfermedades Autoinmunes/genética , Genoma Humano
9.
Nat Genet ; 55(12): 2255-2268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38036787

RESUMEN

The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues. To mitigate technical confounding, we developed scHLApers, a pipeline to accurately quantify single-cell HLA expression using personalized reference genomes. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B and T cells. For example, a T cell HLA-DQA1 eQTL ( rs3104371 ) is strongest in cytotoxic cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.


Asunto(s)
Regulación de la Expresión Génica , Sitios de Carácter Cuantitativo , Humanos , Regulación de la Expresión Génica/genética , Sitios de Carácter Cuantitativo/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
10.
Nat Commun ; 14(1): 6268, 2023 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-37805522

RESUMEN

Psoriasis is a chronic, systemic inflammatory condition primarily affecting skin. While the role of the immune compartment (e.g., T cells) is well established, the changes in the skin compartment are more poorly understood. Using longitudinal skin biopsies (n = 375) from the "Psoriasis Treatment with Abatacept and Ustekinumab: A Study of Efficacy"(PAUSE) clinical trial (n = 101), we report 953 expression quantitative trait loci (eQTLs). Of those, 116 eQTLs have effect sizes that were modulated by local skin inflammation (eQTL interactions). By examining these eQTL genes (eGenes), we find that most are expressed in the skin tissue compartment, and a subset overlap with the NRF2 pathway. Indeed, the strongest eQTL interaction signal - rs1491377616-LCE3C - links a psoriasis risk locus with a gene specifically expressed in the epidermis. This eQTL study highlights the potential to use biospecimens from clinical trials to discover in vivo eQTL interactions with therapeutically relevant environmental variables.


Asunto(s)
Psoriasis , Sitios de Carácter Cuantitativo , Humanos , Sitios de Carácter Cuantitativo/genética , Piel/patología , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Psoriasis/patología , Terapia de Inmunosupresión , Biopsia , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
11.
medRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425785

RESUMEN

A quarter of humanity is estimated to be latently infected with Mycobacterium tuberculosis (Mtb) with a 5-10% risk of developing tuberculosis (TB) disease. Variability in responses to Mtb infection could be due to host or pathogen heterogeneity. Here, we focused on host genetic variation in a Peruvian population and its associations with gene regulation in monocyte-derived macrophages and dendritic cells (DCs). We recruited former household contacts of TB patients who previously progressed to TB (cases, n=63) or did not progress to TB (controls, n=63). Transcriptomic profiling of monocyte-derived dendritic cells (DCs) and macrophages measured the impact of genetic variants on gene expression by identifying expression quantitative trait loci (eQTL). We identified 330 and 257 eQTL genes in DCs and macrophages (False Discovery Rate (FDR) < 0.05), respectively. Five genes in DCs showed interaction between eQTL variants and TB progression status. The top eQTL interaction for a protein-coding gene was with FAH, the gene encoding fumarylacetoacetate hydrolase, which mediates the last step in mammalian tyrosine catabolism. FAH expression was associated with genetic regulatory variation in cases but not controls. Using public transcriptomic and epigenomic data of Mtb-infected monocyte-derived dendritic cells, we found that Mtb infection results in FAH downregulation and DNA methylation changes in the locus. Overall, this study demonstrates effects of genetic variation on gene expression levels that are dependent on history of infectious disease and highlights a candidate pathogenic mechanism through pathogen-response genes. Furthermore, our results point to tyrosine metabolism and related candidate TB progression pathways for further investigation.

12.
bioRxiv ; 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37502994

RESUMEN

T cell differentiation depends on activation through the T cell receptor (TCR), whose amino acid sequence varies cell to cell. Particular TCR amino acid sequences nearly guarantee Mucosal-Associated Invariant T (MAIT) and Natural Killer T (NKT) cell fates. To comprehensively define how TCR amino acids affects all T cell fates, we analyze the paired αßTCR sequence and transcriptome of 819,772 single cells. We find that hydrophobic CDR3 residues promote regulatory T cell transcriptional states in both the CD8 and CD4 lineages. Most strikingly, we find a set of TCR sequence features, concentrated in CDR2α, that promotes positive selection in the thymus as well as transition from naïve to memory in the periphery. Even among T cells that recognize the same antigen, these TCR sequence features help to explain which T cells form immunological memory, which is essential for effective pathogen response.

13.
Annu Rev Genomics Hum Genet ; 24: 277-303, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37196361

RESUMEN

Recent advancements in single-cell technologies have enabled expression quantitative trait locus (eQTL) analysis across many individuals at single-cell resolution. Compared with bulk RNA sequencing, which averages gene expression across cell types and cell states, single-cell assays capture the transcriptional states of individual cells, including fine-grained, transient, and difficult-to-isolate populations at unprecedented scale and resolution. Single-cell eQTL (sc-eQTL) mapping can identify context-dependent eQTLs that vary with cell states, including some that colocalize with disease variants identified in genome-wide association studies. By uncovering the precise contexts in which these eQTLs act, single-cell approaches can unveil previously hidden regulatory effects and pinpoint important cell states underlying molecular mechanisms of disease. Here, we present an overview of recently deployed experimental designs in sc-eQTL studies. In the process, we consider the influence of study design choices such as cohort, cell states, and ex vivo perturbations. We then discuss current methodologies, modeling approaches, and technical challenges as well as future opportunities and applications.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Mapeo Cromosómico , Proyectos de Investigación
14.
bioRxiv ; 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37066336

RESUMEN

Synovial tissue inflammation is the hallmark of rheumatoid arthritis (RA). Recent work has identified prominent pathogenic cell states in inflamed RA synovial tissue, such as T peripheral helper cells; however, the epigenetic regulation of these states has yet to be defined. We measured genome-wide open chromatin at single cell resolution from 30 synovial tissue samples, including 12 samples with transcriptional data in multimodal experiments. We identified 24 chromatin classes and predicted their associated transcription factors, including a CD8+ GZMK+ class associated with EOMES and a lining fibroblast class associated with AP-1. By integrating an RA tissue transcriptional atlas, we found that the chromatin classes represented 'superstates' corresponding to multiple transcriptional cell states. Finally, we demonstrated the utility of this RA tissue chromatin atlas through the associations between disease phenotypes and chromatin class abundance as well as the nomination of classes mediating the effects of putatively causal RA genetic variants.

15.
Nat Rev Genet ; 24(8): 535-549, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37085594

RESUMEN

Single-cell genomic technologies are revealing the cellular composition, identities and states in tissues at unprecedented resolution. They have now scaled to the point that it is possible to query samples at the population level, across thousands of individuals. Combining single-cell information with genotype data at this scale provides opportunities to link genetic variation to the cellular processes underpinning key aspects of human biology and disease. This strategy has potential implications for disease diagnosis, risk prediction and development of therapeutic solutions. But, effectively integrating large-scale single-cell genomic data, genetic variation and additional phenotypic data will require advances in data generation and analysis methods. As single-cell genetics begins to emerge as a field in its own right, we review its current state and the challenges and opportunities ahead.


Asunto(s)
Genoma , Genómica , Humanos , Genómica/métodos , Genotipo , Genética Humana
16.
medRxiv ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36993194

RESUMEN

The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation, and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here, we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues, using personalized reference genomes to mitigate technical confounding. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B, and T cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.

17.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993527

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease initiated by antigen-specific T cells and B cells, which promote synovial inflammation through a complex set of interactions with innate immune and stromal cells. To better understand the phenotypes and clonal relationships of synovial T and B cells, we performed single-cell RNA and repertoire sequencing on paired synovial tissue and peripheral blood samples from 12 donors with seropositive RA ranging from early to chronic disease. Paired transcriptomic-repertoire analyses highlighted 3 clonally distinct CD4 T cells populations that were enriched in RA synovium: T peripheral helper (Tph) and T follicular helper (Tfh) cells, CCL5+ T cells, and T regulatory cells (Tregs). Among these cells, Tph cells showed a unique transcriptomic signature of recent T cell receptor (TCR) activation, and clonally expanded Tph cells expressed an elevated transcriptomic effector signature compared to non-expanded Tph cells. CD8 T cells showed higher oligoclonality than CD4 T cells, and the largest CD8 T cell clones in synovium were highly enriched in GZMK+ cells. TCR analyses revealed CD8 T cells with likely viral-reactive TCRs distributed across transcriptomic clusters and definitively identified MAIT cells in synovium, which showed transcriptomic features of TCR activation. Among B cells, non-naive B cells including age-associated B cells (ABC), NR4A1+ activated B cells, and plasma cells, were enriched in synovium and had higher somatic hypermutation rates compared to blood B cells. Synovial B cells demonstrated substantial clonal expansion, with ABC, memory, and activated B cells clonally linked to synovial plasma cells. Together, these results reveal clonal relationships between functionally distinct lymphocyte populations that infiltrate RA synovium.

18.
Nature ; 606(7912): 120-128, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35545678

RESUMEN

Non-coding genetic variants may cause disease by modulating gene expression. However, identifying these expression quantitative trait loci (eQTLs) is complicated by differences in gene regulation across fluid functional cell states within cell types. These states-for example, neurotransmitter-driven programs in astrocytes or perivascular fibroblast differentiation-are obscured in eQTL studies that aggregate cells1,2. Here we modelled eQTLs at single-cell resolution in one complex cell type: memory T cells. Using more than 500,000 unstimulated memory T cells from 259 Peruvian individuals, we show that around one-third of 6,511 cis-eQTLs had effects that were mediated by continuous multimodally defined cell states, such as cytotoxicity and regulatory capacity. In some loci, independent eQTL variants had opposing cell-state relationships. Autoimmune variants were enriched in cell-state-dependent eQTLs, including risk variants for rheumatoid arthritis near ORMDL3 and CTLA4; this indicates that cell-state context is crucial to understanding potential eQTL pathogenicity. Moreover, continuous cell states explained more variation in eQTLs than did conventional discrete categories, such as CD4+ versus CD8+, suggesting that modelling eQTLs and cell states at single-cell resolution can expand insight into gene regulation in functionally heterogeneous cell types.


Asunto(s)
Predisposición Genética a la Enfermedad , Células T de Memoria , Sitios de Carácter Cuantitativo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Humanos , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Perú , Sitios de Carácter Cuantitativo/genética
19.
Nat Immunol ; 23(3): 446-457, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35177831

RESUMEN

T cells acquire a regulatory phenotype when their T cell antigen receptors (TCRs) experience an intermediate- to high-affinity interaction with a self-peptide presented via the major histocompatibility complex (MHC). Using TCRß sequences from flow-sorted human cells, we identified TCR features that promote regulatory T cell (Treg) fate. From these results, we developed a scoring system to quantify TCR-intrinsic regulatory potential (TiRP). When applied to the tumor microenvironment, TiRP scoring helped to explain why only some T cell clones maintained the conventional T cell (Tconv) phenotype through expansion. To elucidate drivers of these predictive TCR features, we then examined the two elements of the Treg TCR ligand separately: the self-peptide and the human MHC class II molecule. These analyses revealed that hydrophobicity in the third complementarity-determining region (CDR3ß) of the TCR promotes reactivity to self-peptides, while TCR variable gene (TRBV gene) usage shapes the TCR's general propensity for human MHC class II-restricted activation.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Receptores de Antígenos de Linfocitos T , Linaje de la Célula , Regiones Determinantes de Complementariedad/genética , Péptidos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Linfocitos T Reguladores
20.
Nat Biotechnol ; 40(3): 355-363, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34675423

RESUMEN

As single-cell datasets grow in sample size, there is a critical need to characterize cell states that vary across samples and associate with sample attributes, such as clinical phenotypes. Current statistical approaches typically map cells to clusters and then assess differences in cluster abundance. Here we present co-varying neighborhood analysis (CNA), an unbiased method to identify associated cell populations with greater flexibility than cluster-based approaches. CNA characterizes dominant axes of variation across samples by identifying groups of small regions in transcriptional space-termed neighborhoods-that co-vary in abundance across samples, suggesting shared function or regulation. CNA performs statistical testing for associations between any sample-level attribute and the abundances of these co-varying neighborhood groups. Simulations show that CNA enables more sensitive and accurate identification of disease-associated cell states than a cluster-based approach. When applied to published datasets, CNA captures a Notch activation signature in rheumatoid arthritis, identifies monocyte populations expanded in sepsis and identifies a novel T cell population associated with progression to active tuberculosis.


Asunto(s)
Linfocitos T , Transcriptoma , Análisis por Conglomerados , Fenotipo , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...